{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": true }, "source": [ "

Table of Contents

\n", "
" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "\n", "\n", "# Learning goals\n", "1. Be able to take a discrete approximation to limit of infinitesimal volume size and time step to arrive at the partial differential equation.\n", "2. Be able to read a partial differential equation:\n", " * distinguish between terms that represent fluxes, sources and storage of quantities within the volume (infinitesimal point).\n", " * recognize the order of the equation.\n", " * recognize conservative forms\n", "3. Be able to simplify a partial differential equation when coefficients are constant.\n", "4. Recognize the conservation principle in integral form and match it to the corresponding partial differential equation.\n", "5. Be able to set up boundary value problem:\n", " * define domain of the problem.\n", " * define the equations that govern the dependent variable.\n", " * define the parameters of the equation, and if they are spatially homogeneous (do not vary in space) or heterogeneous.\n", " * distinguish between the principal boundary conditions that prevail.\n", " * assign initial conditions (if a time dependent problem).\n", "6. Be able to understand the significance of the mathematical concept of divergence and its relationship to flux at a point.\n", "7. Be able to recognize a partial differential equation when written in vector form using divergence and gradient.\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Approach to develop a partial differential equation\n", "\n", "1. Write a discrete approximation for mass conservation for a finite volume.\n", "2. Take limits as the size of the volume element and the time period of consideration shrink to infinitesimal size.\n", "3. Recognize limits as derivatives. Where the independent variable (eg concentration) is a function of more than one dependent variable (typically 3 space dimensions $x$, $y$ and $z$, and $t$), the derivatives are partial." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from IPython.display import Image" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAFhCAMAAAG3xkv0AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAADnUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJaqAR4AAABNdFJOUwDDXAjLuGQQ02wY7tuHdCDjj3wo65cw8584+6dAr0h2tyJQv1gEx2AMz2gUlteDL3Ac30qLeCTnk4As75vcNPejPP+rRIWzTLtnqBNUPzkCUAAAAAlwSFlzAAAXEQAAFxEByibzPwAAG9pJREFUeF7tnYuD07i1xsMlKbuke1kKu9ApJbCExy3DDjDdspTO0ojO3jsT/v+/554jHTuO45csyZHs7wcTS7J0dPTp+JWHPQMhULLcp7q0E2+eS2IPB4PVbV8/kUQPvI959o0s93ghS4+4+FjDECbntyTRu7Nywyzv4H1d0wFMKtW5k85e7kw+V3NJVdPLZGWE53Q0aTHuBpMPJGVNrckbkrCn48BtcGhaRziTPi0bW1591ca8WtTW/Fpkc54tkj3fFgt7gz7Qpl+BrAT+UeqmpLzxXpbAjrUsu7KSZQMXegtXS8kyvDFteEHNecvi/IL+KLvoYhKAGHhZubk4HCuqW/Y/QtbZq1vTSmWzj3/m174+ViCmellsbJSWxSz1qb2TjhaFLgHVyWKhUmCL/1e1VblY3GubG98rLVNRqVh/r60fi5XnnS4Wq7G02G7Q0mIHg90sWjGsxX5vBTRY/CBLS+otvpGlLbUW/ypLa+os3pWlPTUW38qyB9UWv8qyD/oy8wBZCfzyRvV+b64GzFQP6CqwCGvIF4IHK7qzMU3P2dbGbEGL2eJ8ttArFnqDovMfWtDrBlebAPhHb3gdkSbDYtHtR/Xn4XfuN1s+xipy33g3rI8vVff3CndiD+jjG1X58X4le9EwnI+yAXRCmggD+ijLDozFR1G8gKxwwaOPz1Xp44076ouN/Vr8+Si6FdClep0bHn2UZY4usLBfi4WNUtVyywNLuqDOvkhdtfr+fySRUWejglLVcssDS7qgzr6sPFz96dDzOhsVtLQ8sKQL6uyblb9Xrb7/kyQy6mxUUKpabnlgSRdY2K/FwkaparnlgSUqeGNhvh4LI6Wq5ZYHltRdLx569fEAWeGMPx/D0dvHB9H7+GE4D3v66Gdz7UwPH28M62EPH78M7aG1j752eVZY+fj2GB7a+XgcDwHoQ4Av8XvnH3yq81kyAASBT6flA6SaXfi5LM2HTYauHzn1/mhqD6XWs83ZbLHZko9r9pO/IalmV7Tky2Pzj8pW7COnT+lvQ/U2q+12MbumIVywIW1gNjOv3JaNbajRxvmzreXs6ZpGq/iPsrmPq0ofWUzt4/VsY/perI1X4uOpMTOn18zHlR8xAQAAACfuVbwzV4u0GRaLbh8dxcWH6o6k2iEHj+CixQXIM3XLnLQMymeLHpX+HujALt5TP0iqnSwIh3XRajP5RVJDumi5mWQM6KLtZpIxnIsWXzA2m0nGYC7KkaIT0kQYzkVZdgAu1jI9F3+WsN0hKxzw66I6kYTwXH3v7qNPFw+O86yhRQc1WFgoVT1oqR5KIkP9gV9M2gGfLpYxpfrVBZ8uyjLD5C06qMHCQqnqQctygclbdFCDhYVS1YOW5QKTr+1gvguGZrrUEUpVD1qWC0y+rgPtoHpWsfrn3yUh1FmooFT1oGW5wOTrOtDlVRdp7LkkDXUWKihVPWhZLjD5ug50OVw8aFkuMPm6DnS5Urd1Zo+/l25fVmehglLVg5blApOv64DFUuqV5Jqos1BBqepBy3KByVt0UIOFhVLVg5blAp23sF+HhYlS1YOW5QLOW3w9v5awLnaKtTaCuqjuSdKJkC7yZ4ce8OlimW9lhSMeXQwFXPTBmF0czMPeLg7nYV8XB/Swp4tDetjPRR8nB93p46KXk4Pu9HBxYA97uFh1uREUaxcH99DaRT+ngFZYungEDy1d9HSSaoeVi0fx0MpF5XLrm/7IOXwnfpQ2AAAQAd+Wf04cIbzr/JOkI0Xv3r+TTJS8V3+TFAAA9IffVDen5uYXPvWn6YU1h5XOZLmPqXeqX3tDRvY/7jzsPaOw5rBSfbPmdV1QF2yD/63o72JmHkVzre9Uv1ptWdvNVn7opH8vpmZnW76ZoGnE//j3V7zklvzLLX7lXzbxn/nnCnfPPbKL9JcZpKUi//hHXpw14bDQHdJr5iItdQt9n31iqS51brYyf6aeE9Rcespc1D8ROxUVMxdFRdbYqJj944b7KupquYoeXAxDlE7tk4CLAAAAAAAADIx+69A7YnwSvFGq76NDmnjm8NjkxLj5WVnc7rs795X6sHvTYNTco42u+2+SO/OazOo4nICKL2msts9/7MAjMpv/wHrkKj6ksXb/WXdnPpJZ/Yw9w6hVpKPJ5wBf/ntGEhZ+o06MVsWgR5My41Qx9NGkzBhVpLEGPpqUGZ+KNNgwFI4mZcaooiS80mwVKnYDKvoAKvrAn4r6NseNSMWjErOK70ij5jeAHkciY7QqfiV9mh9we5dq/BZoAJbEqeK/SKDmX6/Q5erJTU5AxTp4O20hf/8YKtZhUyHMACwJ40SzVRuRqilUCDMAS8I40WzVRqRqChXCDMCSME40W7URqZpCBesBlO7OJ6VueDJTotlqa582FWwHIOJpbnZrrc9K1SfJVWHrRDearbb2aVPBdgC7+pzq0vrvWkRC8hXYOtGNZqutfdpUsB3Arj6nurTms3uN5CuwdaIbzVZb+7SpYDuAXX1KfdupNV9GNT+zyNaJbjRbbe3TpoLtAHb1WRpPP++3daIbzVZb+7SpYDsAHVeCFLnj0VSBZqutfVpUeBBmAJaEcaLZqoVINWQVPoRx35owbjRb7SxSLabCXA17C6J60lXxS+X9RI9Dqip+9HZ89UGkKrZznJvT1BCliskBFX0AFX0AFX0wvIp0tQEVO1FvNZarDb8Mq+I4NRxWxTcj1XBIFUnDSK56/TOUijdGrOFQKpKGA9+8eFiGUPHLyDUcQsWY3sEKRWgV7yr1TpIjJqyKf4/qXcBwhFTxra9n0URPOBXXk9EwnIpfI3s3Oizm7fcATEhDAAAAAAAwLL/y+eZ7PL9Bw/cickeMAVueG/0+/TLizxgAAAAAAKYCP5FIP5tnU3d+3OG8uVxlUd2my+c4HXqrgkdwRMxznIiNWuorjQ29rtgpNafUVo9rzk8pIrZ8Mn3Gj0ZSakGuLzhPNZTa6GbZClFR8XOxlqem2Zrymxmv5aVuOr+kF8qf0kJ6oNRqxsXGwsyk5c6Iak1p6v6My2hJdhYrSi6106bO0djQiCQWafh6qVXMlnNOaSTB2tLwTADw86loqZtlK7JYpPyVmj3VOZK0qKKuTn+LBZVtiKzJbHahJ1byxPpit44br81yrVXUD5MSe0dDnKeR16s4O+cko5cXJRVJF1pWqqgfo9Wu4jWvF6isqCIZm+X960VJRW1vdWQVyQXmsikWuRI/f022aFIq26L1KlZRnetmpS16RpHIuha2aO5uWVJxds3ruTrBvhS3aE6eSUbxpl/aokVF6sLUAW1AKAAAAAAAAAAAAAAAAACgH/wBhX/E+ER49kSG7RkxPwn4iX6S9Mm9SYlY+WxOd95MKRhLT9n1hX6s8lRUrH3CqRvySNuJqHj4rGIvZA+nnoSKTc+JdWD3YOApqBjuqJI94nv8KoY8qkh69CqGPapkjFzFwEeVjFGrGPyokjFmFcMfVTLGq+IQR5WMsao4zFElY6QqDnRUyRilioMdVTLGqOKLwY4qGaOMxRBHFVLq8KiSMUIVabhBqDiqZEDFzoj5KkapoiS8AhV9ABV9ABV9ABV9ABV9ABV94E3Fl1S7Gal4XKJW8eaJ+knEqkWqHpeYVfwLiVT1ptCO95HIGK+Kv5FCv0q6mm85FqFiE98r9anx/ou3TpSaB/LflkhV/IWC7LGkq+HvVr4L5b8tUarIn2DckHQ1fBuh7zgBFWt5rNRrSVbzQqn7JgUV66A4ayW75RhUrEOEakJqQsV6bCqE8d+WMF40WrURqZpChTD+2xLGi0arNiJVU6gQxn9bwnjRaNVGpGoKFcL4b0sYLxqt2ohUTaFCGP9tCeNFo1UbkaopVOjhP5+xZ0iRK94M7dFotbVLmwrW/r/6LAIapNQRX3b2abTa2qVNBWv/Rb0MKW3m0e/3f5ZkNdZedKLRamuXNhWs/Rf1NB1bf9KVmx5waO1FJxqttnZpU8Ha/10DSnVqzV9MZBrep7P2ohONVlu7tKlg7f+uAaU6tRYRm94ytvaiE41WW7u0qWDt/64BpTq1FhHVJ8lXYO1FJxqttnZpU8Ha/10DSnVqLSIiFgvsGlCqU+sXouJNyVdg7UUnGq22dmlTwdr/XQNKdWv9QIv4X5KrwtqLTjRabe3SpoK1/7sGLM1nSTfz+Mn9u5KsxtqLTjRabe3SpoK1/7sGJOJ7Sbpi7UUnGq22dmlTwdp/jsCML1LmjLUXnWi0aiNSNYUK1v6LgBopcsejqQKNVlu7tKkQxn9bwnjRaNVGpGp2FTZh/LcljBeNVi1EqiGv8JtS/y3Jo5K0iveUaj4DGYqUVbzt8SjrRsIqvlLqmc4en3RVJBGbvxE1IMmq+FypN5I9PsmqGOYHyT1JVUWlHkgmBhJVMS4RI1WxnROpGwepqihVIyFGFdMDKvoAKvoAKvoAKvoAKvoAKvpgeBUjeZPfK4OryN8HluR4GFpFEvGtJEfEwCreG6WIA6tIIkbxmZ1vBlUxms/sfDOkiqMVcUgVb49WxAFVJBH/IsnRMZiK8XwEH4ChVLw1ZhGHUvHVqEUcSMWYvscQgkFUHLuIg6j4fOwiDqHi+EUcQMWovpYUiOAqTkHE8CpOQcTgKkb1BblgBFZxGiIGVnEiIoZVcSoiBlUxsq9qBiSgitMRMaCKExIxnIonExIxmIonkX3zOiyhVJyUiDzeIExKxGAqinkAAAAAAAAAAAAAMBHe370lKdAf/dbaw3uSA/3ghypqnjySkgkjUrjxP2IMWPNBJFTqxTspArbwg2SJ3/8sedAHUvDfOLYAAAAAAAAAAAAAhOOS38O6oITamAJN4au0aiWJBk5lmVH9TdxVly/oLmTZgU3B3rbo/eCcqTN6ZRn3VCzQQUVVHnp/FRddlK6gzvthMF5voKITm7x7dUWb9jUtaRtnGdS52dRJxa1amzoLKlrOZmveC2xpFSeudKlplq/Qtbe84BdpxipyEW+JuumW/uZUwK1MDytKmfylzps0NyJWYmd2QUvyTNs5pfSGa1nsCvzDfp/SwMkR3r5pqXeSJs8SqNVWb/WE3hGptc6f8iqS4IqXNAJutlth6qvz2ez6wsTgcrmvIjXlHp5ymnarWnGCY5HXbWV2l9obk16xeaqs45X6NCpSF7w8aiwSWxKSfOEha/XYH15yNOhl7uHSzDfrROVPZxx2ugqrSJV2K3jJRy7KbY0lkmlPRWpq1KD/G0J2HFpFTsxZPs3mNFeRXs4p7NlTWmo7lNTLY6tI6BjM1MuWPCzK0LbCrjLZSLWYvEov6b+ouL+CkzvLlN5TkZaiIt8uON8icxW1ZCwWTbExQFs0vVBjsyYmFWX/k/lRXGYqrma8u2T08nSxH3JcVVQsx+JsebUk++VYXMsyj0VaZJRj0XhjJFrxPpEaxxeLK71bn2d+FJc7FbckDMPD39svciG9cAxys/J+kcbHKR1W2X6Rd21SI1dR7wdNF7pOYb/Ii6v80MMHrktpJ/tFSh5fRXPWrd3L1MuWOxWN3wQfJGmIe4dieqEdq2m2f4wmtIq6mRyj+ZCqt3JdzDVYMUJO3LXunDfbiK5/wQFN8IGQu987RlOWl0u9ArSjYxo4AhV9ABUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPDyH/qHJakgXoORcfPjZ5rdn8wkp4F4DsbE64dmcp/ckYKoMVsNIwVgJNx7Zub1hyTukJ9vNfwiZWAMPHqjJ/bzL8+lIGqKWw0vpRgkz8v7emI/yG1xIqe01XBaJ0DiZCdc36TxUIHDrYazkgTpkuZlyv5WwyWSBImS6GVKeavhQkmCFEn3MqUMl0sSJEfSlylleJ0kQVIkf5lShldLEqTDGC5TynANSYJEGMllShmuJEmQAuO5TCnD9SQJomdUlylluK4kQdSM7jKlDFeXJIiXMV6mlOEWkgTx8pjnaWSXKWW4kSRBpOiZTYs+Ww23kySIFD25CdHz4p6bShJESkpz5OBrSsOcKinNkYOvKQ1zqqQ0Rw6+pjTMqZLSHDn4mtIwp0pKc+Tga0rDnCopzZGDrykNc6qkNEcOvqY0zKmS0hw5+BpmmPduqCfatBNibPKkpIWDrwGG+fg9G1XmG0JuiMWJk5ISDr56Hubzbz+xRfW9wzfq3v1Fm2CkZOKkpISDrz6HeevuCZtT89+koAe/zbWJk19v8UIKJ05KSjj46m2Yd/SdoJT68k4KevD1e23i01v+PJ1TpnjqpKSEg69+hrkxJ4Yn392UAnue/2K+bvn+sRRwRpITJyUlHHz1McwXbETd/4Nke/D6X9qEunFPCgjOS3LipKSEg6/uw2QLXnj4WiwauEiSEyclJRx8dR8mW3DnTwdft+RSSU6clJRw8NV9mKEsuNsdCykp4eCr+zBDWXC3OxZSUsLBV/dhhrLgbncspKSEg6/uwwxlwd3uWEhJCQdf3YcZyoK73bGQkhIOvroPM5QFd7vdePlP7qmMrIyC2PxpwsFX92GGsuBut507u29eHCBVIiAub5px8NV9mKEsuNttgTtoQGpFQFzeNOPgq/swQ1lwt9sCd1DFH7967fv1v7VV4q89vynCbSUZPQ6+ug8zlAV3uy1UdSBlVav68c7c20148A8ptoJbSjJ6HHx1H2YoC+52W6jqQMqqVvXif9lSkZeywgZuJ8nocfDVfZihLLjbbaGqAymrWtUL86WlAnNZYQO3k2T0OPjqPsxQFtzttlDVgZRVreoFQrE77sMMZcHdbgtVHUhZ1apefGVLRfp8qZPbSTJ6HHx1H2YoC+52W6jqQMqqVvXjzgO2lfH5n1JsBbeUZPQ4+Oo+zFAW3O22UNUBlz3/lV7+JgXu3PmdjTLPel0/D6CERxx8dR9mKAvudluo6oDLmAf/kYIYYIckGT0OvroPM5QFd7stcAfVvLgtVeKAXZJk9Dj46j7MUBbc7bbAHVTxnayPBnZKktHj4Kv7MENZcLc7FlJSwsFX92EGsqDfBpH0xElJCQdf3YcZxMJGvwfySHITp0KfaHHw1X2YASzc+8BFdyU3eQ70iRgHX92H6d3CbR2I/5IcQCh2xbOF2/r2O1+SeNrxQOzpEzkOvroP06uFVzc4c+OVZAFT0Cd6HHx1H6ZHC8+/cPLN/r1zQK5PAjj46j5Mfxb0b57+GNcnHTGQ6ZMCDr66D9OXhbu8+FC4qx0QjD5p4OCr+zD9WHjLLw82UgKKsDSSjB4HX92H6ccCcZLdbxbsw+JIMnocfHUfJlvwwMlXsQfKsDySjB4HX92HyRbc+VGsgUNYH0lGj4OvKQ1zqqQ0Rw6+pjTMqZLSHDn4mtIwp0pKc+Tga0rDnCopzZGDrykNc6qkNEcOvqY0zKmS0hz193WT0jCnSkpz1NdX87V9hGLkpDRH/Xw1gfhWciBa+k3vcejjKwIxGfpM77Gw99X8kAmBmAT203s8bH3FL+qSwnZ6j4mdrwjExLCb3uNi4+vt77k2AjEhbKb32HT31fy0E4GYFN2n9/h09RW/MU6SrtMbA918RSAmSrfpjYMuvpofuyMQE6TL9MZCu68mEJ8gEFOkfXrjoc1X3P4jadqmNyaafUUgJk7z9MZFk6/mPjQIxIRpmt7YqPdVboiE+9CkTP30xkedrwjEUVA3vTFS4+tDLkcgJk/N9EZJpa/6zlwIxBFQOb2RUuErbhE3HiqmN1oOfEUgjomD6Y2Ykq/6XoUIxNFQmt6o2fNVB+InBOJ42JveyCn4iru3jo/C9EZP7isCcYzk05sA4uvXEwTiGEkuFHUgnvwkRWA8pBaKOhBxP+sxwtObFgjEkSLzmwwIRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3nmvv6L2zQ/rO1IAwHF4/kzHonD/r29/xK1tAfFRQuLYfL7x3TtxCUyTWEKReC8uATAQr/QzOAo8ePbx0U1ZCcBg/CwBqNSHL29/lEIAhucX9eaHl7h6BgAAAAAAAAAAAAAAAAAAAAAAAEAXnl4ulFIX1+utyW+Uqnn6wKr6tuFKrSQVFPJSUh0gV6N+hEK9yNPlksJwsVqtTi8oodU5Uigu1EJSNRwlFGuG7EyNyOfL6UZoccpOTdp6g/UTirRFSKqGo4SiVafu+HI7RWinWB47h+JT3kku1ll+tlqq+Xm2i6D129VcqfnKHNIlFLdUZFpkbK6Xu1p0IkAVltdSZUWRx+uX17p/PkfQu+Vdb+UWe1FxtfP7VC31cq17u3yqMzKneXzL9mV6pdMRdipPaIyz0lwgK4we3oYluTgtq0Xl5KSan+411B2d04qL3OD2ise4uDL9iT8Lsr2m8gvdnAqZlk1ytNCukIRYF4TUgpyeb65oajgKOD8/35xueWa4AoWHWpxv1jQ1pyZPc0WBuDzjXA4rfLU5pw4uSP5zMUqN5rx2RUaWq82G+6fOz6iX+WazLfRWbrEXinkAztZKcb887aY3xVFcG4pLXY1qL9R8rcegI529vNpsLmnMhWB7uqGKmw35R5vs8tKsv5SVGtokuB33K/4Y9PAuTTlr+5QaLqg/GoTOiz8L9me9OWetSENW42qzL+OUeKo3V2JpjrOkko4wFopjgPJyAM5DUYeGnh9e0PrDQJzRLkd2OBcL2vRJY5PbXrDqbItDhvJiXqIm7+2gxX4ozi7UNS+emmpURXqj4KDgqg1F2XGTMePvXNe41j0wtAEYvwzSKYWIDO8sV4c5Wyxlny0dZOQdsYUte6m9JUgXikWprlcy1K34V7QyUbZr2nA5CnaimnnY5UkoXhRDk9eYQM6kzshraRb5XIvqYouQcNmFountoIVERQbNLk+2iUhqJTMvwZW7dhCKJp8b01dLZKtAcSRSrxB/sv1l0HGXdNMYvw18gDZQzyvul/eFjNn0xJ/8Wk3Xyt2eIut5cei07dOrqER0DsXl2ZaOR7JbEmpDkXZ31CoPiixcGkLRtCiFIpc+pcDQx0VqlYfiBRvKXdtNNefzXvdDkXZ1RWcLHIaiEUmg4y4dhnngO5U0e6F4xf1moUhhj1CsgCMoP7BShmd/J2rnUOQ8HXiKRzbKZ7HJO66qA7TJZ+GiI6jQW9sBmoNiTvtL437NATqfagogzue97ocin2lKqGyyqzWDBF7dAXrnk3SQIf0TdDqo46/mAL0fimajmyg0CXSRulrxxWopGETojqHIMoquBmpNFwbnJD0XU9DkFyEcNHlQZKFIU3ZuLlukt3KLg1Ck+NvtDMn97LKFi8Q18mmpS6kq5/NeS6HIeb78oGv3/csSanBVumwpRKK2T9de5mxbVNFQO90zjV5vI8XLFg7qmlCkxem0L1v4bGeRve2wCwYzX7u8TGRNKOqjVXYY0ui3V/KdTPnNnCywJBRnPM2rQm/lFnn05NC+phAXVW/mUCkH2eWWeuF83mtubBcM1xSuh2/W8DW2rlHzZg7b12PcXfkw3BFfp8/lzRvat1e/mbMfirMz3iPoEgC8sNvSADgqCEUQCQhFAAAAAAAAAAAAAAAAAMAns9n/Awdlq+9O6WM6AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 2, "metadata": { "image/png": { "width": "35%" } }, "output_type": "execute_result" } ], "source": [ "Image(\"figures/shrink_to_infinitesimal.png\", width=\"35%\")" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## 2-d transient mass - balance statement\n", "\n", "We'll do this in 2-d. From that we can easily go to either 3-d or 1-d.\n", "\n", "We'll consider the transient case, where mass is changing in time in the volume. Let's consider the simple 2-d stencil, where the gridblock is of size $\\Delta x$, $\\Delta y$, $\\Delta z$ (where $\\Delta z$ is into the page in the figure below)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAIhCAMAAAEtMCGTAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAJ8UExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsxgAAAApsxQAAAAAAAAltxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdqxgAAAAAAAAAAAAAAAAlsxgAAAAAAAAAAAAAAAAAAAAB/vwAAAAAAAAAAAAAAAAltxQAAAAptxQAAAAAAAAltwwlsxgAAAAlsxQpsxQAAAApsxQAAAAAAAAtuxQpsxQAAAAAAAAhuxQAAAApqyQAAAAAAAAptxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAptxg9vvwAAAAAAAAAAAAAAAApsxgAAAApsxgAAAAltxQAAAAAAAAAAAAAAAAAAAAAAAAxsxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxyzAAAAAAAAABfvwAAAAtsxgAAAAAAAAltxgAAAAprxQAAAAltxgAAAAptxgAAAAtrxwltxgAAAAptxglsxgltyAAAAApsxgAAAAAAAAlsxgAAAAAAAAAAAApsxwAAAAhuxwAAAAAAAAlrxgltxQAAAAAAAAptxQAAAAAAAApvxAAAAAltxQAAAAtsxAAAAAptxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAlsxQAAAApsxQAAAAAAAAltxgAAAAptxQpsxQAAAAAAAAAAAAAAAAptxgAAAAAAAAAAAAAAAAAAAAlrxAdvxwAAAAAAAAltxgAAAAAAAAAAAAAAAAAAAAAAAAltxQAAAAAAAAptxgAAAAAAAAltxQAAAAAAAAlsxQptxgAAAABqvwpsxgAAAAAAAAAAAAlsxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJL69r4AAADUdFJOUwDWgrDxXAjey8+4w/lkhxDmktPAbK0Y7iSa24fIi3S1IPaiBOOP0HyfKJOq6zjv2JvjhI/FMCx8svNY4BjNOPe6+2an6JTVQP8Qwm6v8Pucp92/SInKdiL4KKTlUNJ+v6ztWBQE2gjHRLT112BMoYMMy+JAcM9k0xy8x/1obBTqlmDXPMQvaOdwsdsc8jCegN9cSnSLzHgk+qbn65PfgMGjLJd475vcNPO292Kj5DQg0Tyzvv9qq5jZu0SFr8ZyVLP0t0hfDKvhTI1Qznq7/GeoE+lULbOuBQAAAAlwSFlzAAAXEQAAFxEByibzPwAAHmZJREFUeF7tnY9/XWV9x48u1JoGi27rrW5isziXKnQFV1mAUeImPejSQdCkTnFrCLULKMU4qERpMlZAWoxUKB2siLRLawRC2LNOqUwjE3BztrX/0J7v83zvvbm533Pv99w8yT33ns/71d7zfZ5z7nO/9/N8zs978pwINIrh6fIwJurkcFl0RoUZDhuHvpIp+LgB4qs48Dz7AAfpeCyuguekpPJtDTaycoTxD5qpQRaaMdGZUrQMjAnTTOntWdCmDJpJptWaMQ3SyDZazCZMMw3sd1Ywm+w1M8+hkoRmqNuXcGnUsXTpw9ECR+UZixax2dhSdUvzd3PASG82fX0cRTFtHauOosqbzCL/GE1wJDXoJU51FLX0AxyZ6/CU5KaZBo5PV/JLpQfNJINmlhLqELKjeiPaADig1YBmwOrS+FWkSo4sv5tNdC5ay/FyMEfOcZSeJfv29Lt6wl8MW8y9PCcV+3nKNJYLAA1RfTrVGEFa6cM+BKwEfEkrPfx+T+PuXHxOugyP38dTS5g1pW1aKb15mbnw5rDUSvdoVYNPRe/iSGKO3svvKb3VmKdKV7VqUL70NTdsX4b9+0utbHqqHDPd0Y0cSYzTy0EXVr1TzxRPiWa3Ms1TovFWenlKNLuVQZ4SjbdyPMj2BYeeoO1pfPVYxJ08BQCAlkT4rbdZ+MNu+3rEl5vHQZvIvP2/tiniVByBneNTUJvJaiezLo6PDw4O9vb2Tk9PT01NjY+Pz83N8UxHHN/M0coTx4tOfKt5d6N3JOaBptg4AeQig1xkkIv93PVR9NxbXGCalkvHWHRmyYc3LZdog8lOLvZ/RnKRQC4yyEUGuci0VS4Bv4y6qRMJB+pNyIVu11hy54WnCbm8Yc/7RGWakEvirwDIhadLaFouhSNVd1FVNXBsja18qm7Ls8Z0c1hEeoe/HLEUm4ut9P8mJ7lSasBEs6dMNHqYizLVb9PXRXOxq7f/O+eHF93yVr3wAtVNiI2UcbOXCCO9RWxmPHZymXk7n3+DdQgLU9VsvR+Iv2HMP3BYRMyF4LjEeMm7lbOkBhpE3dRUhtajaeQi0puhXAYzk0scD8b3i9k0QZe77PELh5U0IZfoKw9zsHIE/FrLBrnIIBcZ5CLTrFxuMCdVx7urwQFznqMyzcqFPnfpZzcrl2jB0KXvCpqWiwBykUEuMjnMxZ2K1oUXBgCANiJDmzYzdJaj5lO8oe1C8/XxiXRO0muTITUoiyzsEF0e9L/5uYzQVXybBv9d1irzk4rrWny8Yi5E52mMyE/42tXh8dr3OK7mHZBxHNe+NfSueCdHKw79ilsXXnbFOVHno+L4So5Wg3grBxLx4j87A02h+RvXMshFBrnIIBcZ5CKDXGSQi0y2c6Ga5mQo5PLeDOViqzKTy/mu7OQSmR3ZyaVZp/ViLh/ISi7NA7nIIBcZ5CKDXGSQiwxykUEuMquUi/+VYRWxnyn+IZSWgLpQU8u6Xh82l/szlEsc71xGMkFzieN4Kn6Ci+kJmsu6KJ7q2cjF9ITtI5uLjxsidC5u9McGQS4yoXOp+N00Je2eS6MjMIXOxQXZycXdCTF5MKp+MtIi7CIz9v/6Li4T1bncYPf+GziuBR0lnOTYUZHLfEFqu4ydZ2ajaOwol4nq5ammVitFqpahCpuLnQydp8niv/usosMuMbrkwmBVi+/fxUE9EnJxNzbZ/3XuWdnx0o7+pctUvWF38TGD9TB95dGDHdSU/3NYejEjtR+5YKwy/VFVJ1dw0S5TetRWLare6XI5SDZyl4ir5ldC8y8xt3HJUf0Ocyg6VacdR9UyVFE+kqrXRD9938qFhLcsmOLz0GrC379MRS7mAgcpqJd+CipyaQTkIoNcZJCLDHKRQS4yQXOhgWiWkU3QXHYu7+bNsH20vPtIw+byQmMPmmLC5pIZ7y4b5CKDXGSQiwxykUEuMshFBrnIIBeZ6lxM18kmJSjkEkXn+zleXYRcDmuueq8EQnf8SncNPjxVuXzt+/ZFyHAVEPooim6tPVLkSlGdy2ZDP2A0g+b0hgxykUEuMshFBrnIIBcZ5CLjfk2tCy8MAAAAAADaHbrdcJ5jUGTEdM6bWncO55JJM0TnEy72E9PI3ZhtxowZsa/GDLuS1WWtKT/eJ7cU/FZlyNAYgFE0jHNMougSXn0mzdpSTY4pb0VIlgtOm1zY5XtxHJ/muIoj7sKMp8BbGasL/91GHO9cvSeLryJ7TtPtjNdzKT0n6O01n4PeeszRdwrDA9xkm+CUWceF+vTMERvHiTemiIc/Ti1s38MLtBH05KsPcpwStw5dwwVQ5M1n29AmIAne9QaBm2wHAn4XyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIjmTpfiXFGfqXDrInSzGjNopZKnAmH3GfBKyLIHUOGyugCyVODVeN32QpQKvxua6V2tzKYt7zrwPEsiZLFogiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCKyErKker5VNr/LCjSV7s8J8iIL3SL+pg815EOW60mVOH7E1WjIhSxft2tQHE9bYXxdffIgy944vsOuRVMphkzPgywOkkUPZBHJkSxpnlUHWUQgi0iOZEnzYEPIIpI/WS4YQ4OC1CZHsvjpsCmUbpxIpn4C3MYpYza5ILHN+k0R284XrriE40R0TVEuTPJjIItNsSwjNBaI/wpnzVlXJX2h+gn0GfeQzDFj3LMcn0xMQfFdHjSm+7VNj/aZY1yRgKIph+0qzyGuqKbYlJdl0o0W0+mHd/B6iN2sSMCM2ZfPmleeNL+2QZe7VVKiflPzxRTuPvmUDxJQZOUQv1IlvMSck2Wt36pwHu5VHmtIkcA/mbt9Ex32/6NmgKurqN/UdUb5nFFFVg5ehWqpw7OcLAUeBITlHLJrUcIITJoEzMnou7QmPW0lOZz8hvpN/Z95B0d10GRF1NKD4SVIlvIAZhwlC6pJ4M/N2/SY1yjqNkdrjAGmaMqYNW560dR+pIMmK0Ivy3gc04hLJVyl4bGYqlElYJvZXAzcVETTlN1wD5iTtfYcDlVWFvcNHVxRDc+xsvigjB9tSEabgIJMN1UtS3G0IZG8yDJV7ZZaQBaRvMhyH2SpgJuahiwVQBYRbuoeyFIBN9ULWSqALCLc1C2QpQJuahCyVGCbejZ+2cuilyYPsuyN4+kH4vj6WP8A8TzIEt3s7m6J44d9lYJcyEKrj+UOF6rIiSykiw908FWcNoa/6E6erjrZdEvTgSwikEUEsohAFhHIIgJZRCCLCGQRgSwikEUEsohAFhHIIgJZRCCLiOa7nOozxnR9gEuJ5EyWDvO79nVDd727y3MmizEXaTK6o84zW3MmS/Q1uro6MZB0x3ORvMniuLTD3yefTL5kmfS399pF6yybM7f8yK5CAx0Txdt8E8mZLFogiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKItJMsAAAAAAAAAAAAAABkCBoWj0NQhm6f4xCUmDedkKUaqwlkqWLITEaF4gCkrqbTHHHTXENaTPq7uCfNefeaPKhqbugkRY7wgKwk0UGsURYvAksxY87VGp01PxT8doS1oCH35UGf84U9knPTokWsKtjckgwHeeom5JZhF+Wa0oD2pjjQ/kixJs+UNiTn3a6Zxk/HtsUeyRU4ciYp0BMazubjqOUTcfLYVLTfKWEd40QqrUUP8bQN2bOl1kBmLIjjSMQ2Oc/7onvi+AUXtB+DNOjdtVxIyX5678tcaCeuoS/Wy4X09Jy2b3+WC23DyyRKfPzeQeLNXuI908TDU8TecWLjHMHvqGIvtdBeaxJtVALRVmvSG/ylAnAlN9ke/JS+0uNcqI9bn+bcujXu1rOpaWe5aZ7fNuxZ3kZznERZx4W2wm00OU7LdvvW03u40G6kHCG9zDqrin4NzA2/jE9wBAAAi+Fz4yBwk+1AwO8CWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEcmXLLvNX/mg3m/v+ZLFGLODAzdJJHeydHPgJonkTZZd5k4fuHIieZPlx8Y87QJfkUTeZDlzwD2xCbIsxsoSzZofQpZKSJaLxqyHLBWQLNFhuxpBlsU4WaIJ8yvIshgvy2fMbyDLYrws0ULdG29zKcsoZKmAZYneC1kaArKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIisgSw9PdZi2h7/o6b0cqMhmF4dvam+64Y3zIkscx+/xkYqcyHJLykHC8yFLD6kS3+sqVORDFn5mxS9djYZcyPJQHNNw+fF2X6UgF7JYRabtJjfFYzjyIMvzVo9eu8W16nBlXfIgSxxviUiW8Tjez7X1yIMsj98fOVmirXdxZV3yIAvhZNEDWUQgi0heZBmELBVAFhHIIgJZRCCLCGQR4aaOQ5YKIIsIZBGBLCLVspR/O0omf7LMQBYLN1W6MnfBFCBLtSzGXDBm2MfJ5E2WeTMTnTdDFJqCqxk2a920groJvM9c7qYTZpebXu1HjhPQfZejf7r7xn0cJ6KUZbf77Z2gUdtklshCK9CI6SyGlhkz4qYV1E3g16bfTe1nu+ms+aybVlO3KcsB/y2u42ISmqYsvjHCjwkpwU2xLEOkiF2LKOYvxJNK6ifgXXK3/ey3KZgwa2giUL+pqGAmXtx0w2WGBlmrhaIpwrazycMVAtwUy7JYkBkzb19HpHVIkcCYW6TbHDVX2OkaXpcE6jd1qel2688XxR5aRP2mHMVhcmrBTcXxcfvaac5SwX/8kCvIqdRP4BnzqH3tN1E/CfKl5cjSYT7mg7GuDT5IoH5TjtSysAZ+cpC2ucO84V1C/QQumoEo2mDGoj5ju7rbiSRSvyljRjmqQ/2mHGllmTHnXMG41cepY/fXrmoJigRIlg+Z83YtfJFGAePaauo3JRtWQLmc39wSXCHAs0gW3tTSujRJE1t0jhFQJNBhlymY9XbZDv8/gfpNhZdloc9RY3meRbKwSaLonBfDppOUkSKB183FyMzaYNaMftP81lcK1G8qvCxpVqL50scP+6jTnge4TXA1igS2mVsvNbtt8MfmxWekYx+mflMD5jYffGrgyz5IQJEVkUqWQV7fPFR3jqcCmgRMYcAahobR6yvUWL5+U6+YBR+MmSd9kIAmK0s6WewpYgl39F/DvZoEdtl2XHDY1Ni0aJqaMH9Bk6/xkXMimqws6WTxwSKMOchRFZoEvmPcpiWKPmLM+1wgomjKHsf1d/dZlcl8NVDLMuH63pi3uKaaZFnWJm1YLJoE1hvzNy7YXOvkQ9XUtjH6EgvJZ3YetSwluKaaRFkmE/bNDmUCGjLdVLUsZoYDifzI0usDHZBFBLKIQBYRyCICWUTyI8u0D3RAFhHIIgJZRCCLSH5kucYHOvIjy5QPdEAWEcgiAllEIItIfmR5wgc68iPLuA90QBYRyCKSA1nm4tNelvfEP+PKuuRAlv+hza2VpSfFmBw5kMVKQgMJXLkljtUDROVBlo1x3GsdE8dbua4+eZClOHwL38etIRey+MF+9MOU5ESW6BekyhZX1pEPWWirq9/eWnIiy/fSbG8tOZHF2sVPlfBdM22M/56Pp9jehiWbbmk6kEUEsohAFhHIIgJZRCCLCGQRgSwikEUEsohAFhHIIgJZRCCLCGQRgSwikEUEsohAFhHIIgJZRCCLCGQRgSwikEUEsohAFhHIIgJZRCCLCGQRgSwimu9y+zFjTN82LiWSM1m6jRk42c9DzNYgX7L8yHTRWJ83FoefSyRfstzEA1YbGku1FvmS5W/NYTfdUWOYNke+ZBk1ZmLgEi7UIl+yRKdm6U7Zwn9xMZGcyRJF88/QOIUvcSmJ3MliefAmY77IcQL5kqV4p/mH6tklX7L0m7vd9F/MrW6aSL5kud100a55c1dxlOUk8iVL1GdMR1/BmG4uJ5EzWaI77QmR6a47JnLeZFECWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgiwhkEYEsIpBFBLKIQBYRyCICWUQgi0hbyRIQbhIAAAAAAAAAAAAAAAAAAAAAAAAAAACQL0YKxpizXACgBpP+brNhLgKQSKc1ylr7/xyXAUhixvpk/oh96eQKAGQu0OGK3QHZV9z1DGoyzF5x+6Ijvs7WknXmueB3UxyD/HLQ+qBwgaIhG513dcQ8ucUf8I7QIgddCPIMeWLGecXbw0UOZxE7x215cOQLnCNmOI7IFaU9TxSdc/PopBp7IOD3POUzIPLF4utyZ23Zgj0QsJA7Fp0t08lzgWPC7YCwWQEEneNMckxcIG+U90M0m1i8CMgpdCmu8tcgsscQx+74dtgtVKwCecVdiltiAzqE8Xudg8VTILfYiKsDbcD49DhHKXAm6ByqxP2cSDPpd6K1/oTaXZ2DW9qBO17YGVtOc1EPbURE7JbFnQWVToHc5ZdFZ9TRHa/G8QMvcwG0CD97jIxCPME1q8JH/Wc+ex+XQda5fqvbpFi2T+/hutXiobv4o3e+cDNXgcxy7XHurXhdk3YH+2/hBLBDyjL7n+deWkGOl3lssMxPesu8MH3PI7w0dkiZZe6n3EWZAjukrLLnmu3cR9uvmXt5vMy1U2VOTJfZypsD4ie8mSB46+HgFhvjqilODWSRN4pnQk1ap3vuK+2Fnt/PdSC7lA8yB3u4apXY+CZ/cHz8Wq4CmafnxGnfZ1xeFZ5wH2m3ab3Xcw1oFfauO37Pqm5Zeskpj/2MSwDUZG6Vd3sAAAAAaFHoroEswumBLJHNboFZMgnMAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUBOkW+kv2rr/kAnFmmX/bDrNkkmBmMea3a7gIs7QpAc1iZk9xGWZpT0KaxYwd5QqYpS0JZpYz7x8zZuJzvgJmaUvCmSV67bCdLByiCpilLQlolmg9PQBv4aKtgFnakpBmiaIfdhnT/SLM0qaENUv0oz4bfngNzNKWBDZLtInc0nc7zNKOhDZLNPq+CWN2wSztSHCzRNHV9hya4GIjwCyZZAXMEp3qhlnakiDdstta4zmOiTXX2Yq3uNAIMEsmyWa3wCyZBGYBamAWoAZmAWpgFqAGZgFqYBagBmYBamAWoAZmAWpgFqAGZgFqYBagBmYBamAWoAZmAWpgFqAGZgFqYBagBmYBamAWoAZmAWpgFqAGZgFqYBagBmYBamAWoAZmAWpgFqAGZgFqYBagBmZZBide5SA4bjQk0NJwVzK3xPG7ezgODNZhPa2QVc9dseWRm7kYFnSLnhbIav9p8kocb9/IFUFBt+jJflZ7vVWIh7gqJOgWPZnP6utsFMcUVwYE3aIn61k9zzZh7uHqcKBb9GQ7q577ySHPfpxen9/uXv2McKBb9GQ6q+u3kD/ujT5Kk2/d/AhNHnBzwoFu0ZPlrDaSOeKtUdRL06mo5900vcstEQx0i54sZ/VLur5Cx7Rslih6007v30PzgoFu0dMSWZXMsgKgW/TALOgWNTALukVNS2T1CzLLV7gQGHSLnpbIapDMMs6FwKBb9MAs6BY1MAu6RQ3Mgm5RA7OgW9S0RFbuTrnPcyEw6BY9LZHVcTLLHBcCg27RA7OgW9TALOgWNa1rloMzxpi1XGgcdIueljXLiP/7ohEuNgy6RU9LZLWTzFJ5G8sQbVbs//Ncbhh0i56WyIq8EnPsmbQ+GbpAmxauaBh0i57WNEundYndAdFknqsaBd2ipyXNQvsfOlihfdFZX+WdM8Sx5awtavZRAQT4Q/tR/8ux5bMTtnxsUSrvsuWbOFYSrFv2/cFlh4/Zz7cMLFy9nmsbJLBZfFoVnNzB81JQ0ywX6DTIbVDmbVBwdRY64u3k2J4r0awLXKhFAAG2HTam4wYuRBu6jLF2md3H5ejt3cbsfo0LSgJ1yw27rAxm4mTfwkA3RbuuW5ZdVsAsfZX0n+J5KahllgsF+xkHfUwfV9oPUaFkj0UL1SaEAB+yH/Z9jqnQv2C75o+4HN1k56Y9xQ/TLZ/uN2bslad9YXRozCbSt5zTxxUwyxmOl0FlVvvJK1dxYZg+YpgL521c2t5T4RzHfFCjIIQAm6w3Orb5eH7AmK59H7bd8gNfscNuWAql7Y6SIN1CW+DZDVwgPmIrdjWw7hZpBbPMkVmO+9jteUrbD9r1lFbaI7bA+yF3suTDegQR4Kv2837uwzutV74UzfeVDmNet/O+4UM9IbJ6dNZauGL3t+abO9Zw2BAtZhZyx6JDEXfyXNrbUMHNS+GVMAKst8eQfW5zf7d1yYCd/r49WLtIFdvshqW4kdETIqsvWxXKB3EhWAGzfPjMYp7jOalIMgud/sy4OobOi0q2II/QfiiNVwIJ8KQ9OqBzr1HaIdH+b5+t2E1zvmGT+WsKUhEiK7s/NB/jOAwrYJYl8JxUJJiFXFB5qEjuKa09tIuyBf3xChFGgDXWGwv28IBM8xFXc/mY6f9UFG22XbZrk6tJQ4is6MD60xyHYQXMsvbuxdzGc1Ihm4VcsGS7Sv6oPAUappcUV+oCCXDUnqR+KjpkTzi6eZ9zmd0fveaOur/jK9IQIqv324/uqjxG2fQnty3n3HkFzBL8mGWczLLOeWVmaAn0gSVr0IU4y0z5oKY+oQSw+5+u9d8xZuKrXLHDHr0ceJCqF5+QKAmR1T57gGv+jQue79qaWzlugJYxy6DbiIiUvOEXUR+uOEIJ8M0+0/9KhzH9pYtx37ZHti/1m/5/5XIagmR1yYI9de4c5VIUHbLpmYVl/D7SOmbhQi3oXCnVZsUSTIAD9N1N91EuRtGDXa6m7J4UhMlq82H7+V2zL+44NPr0xW+P0c8QY+mPn8q0kVkO0tFK6guUwQQYofXWHOAScdTug8yxd3IpFaGyumg3LmX6Z93ZfMOsgFmq4HkpaMQsdEjTwI1z4QSgq28TFT+E/djWHGjoMljAbtl8+Z9d0W26n3n9cr7u3ziBzbKbzLGEt3heCtKbxd04p/oxaAmBBQgEstJTmdUUmaWXC6FBt+iBWdAtamAWdIsamAXdogZmQbeogVnQLWpaIatpMss0F0KDbtEDs6Bb1MAs6BY1MAu6RQ3Mgm5RA7OgW9S0QlYrORo7uiUFMAu6RQ3Mgm5RA7OgW9TALOgWNTALukVNK2S1kqOxo1tSALOgW9TALOgWNVnO6qFfvOqe7lA2y1d6n6BJSNAtejKclbvKTw+IL5rlIZo+5hYIB7pFT4az6rmfzHHVnqJZvk6T+GG/RDDQLXoyndWr5I7t+/1o7M/Ta3ylmxEQdIuebGf1QWeQ7fTyCL1sucPXBwTdoifjWX2LLFLi3h6uDgi6RU/Ws3qDfUJs5bqgoFv0ZD6rz7tHghChD2096BY92c/qji3eK8EPbT3oFj0tkFXPY9YqK3Bo60G36GmJrAZX5NDW44aQAS0NdyXzBk9zA7YsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtTALEANzALUwCxADcwC1MAsQA3MAtSE65YffOlz3y3s/vHr79wxyjWNA7NkkkDd8snuCR4ciRj7DFc3CsySSYJ0y+h15JDL3nnbjh1vv7hrjAoP8qzGgFkySZBu+R1rj9lDXIj2ddviW1xoDJglkwTplrXWHS9xbPm9sZMn+7dxoSFglkwSpFve7qA9z89v4OLygVkySZhu2XzYuoUY6H7pP2/D2VCbEqpb9l29+3DphGjh9g1c3SAwSyYJ2y2bL//n2QGyS9c7uKYxYJZMEqJbbrfu+A+Oif+etRWdXGgImCWThOiWv6M9z+IDledsxQTHDQGzZJIQ3bKNLsMNlC/D7Ttpy3/PhYaAWTJJkG6ZJ7eYhc+NnNq07eLH+uyB7m++wLMaA2bJJIG65ZPkkBLHCsu85AKzZJJw3TJ/9t+f6TPdX3j90dKF/4aBWTJJNrsFZskkMAtQA7MANTALUAOzADUwC1ADswA1MAtQA7MANTALUAOzADUwC1ADswA1MAtQA7MANTALUAOzADUwC1ADswA1MAtQA7MANTALUAOzADUwC1ADswA1MAtQA7MANfyn7JmD0wMAJBFF/w8MOrgIwkdN0wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "execution_count": 3, "metadata": { "image/png": { "width": "20%" } }, "output_type": "execute_result" } ], "source": [ "Image(\"figures/nsewc_stencil.png\", width=\"20%\")" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "Recall from notebook `5.1_finite_volume_2.ipynb` A transient conservation statement is\n", " * **the change of the quanity in the volume over a time $\\Delta t$ = the net flux of the quantity into the volume over the time period $\\Delta t$ **.\n", "\n", "To make things more concrete, let's consider the case where the conserved quantity is mass $m$, such as sulfate.\n", "\n", "\n", "In one dimension, the transient conservation expression is (from `5.1_finite_volume_2.ipynb`):\n", "\n", "\\begin{align}\n", "\\Delta m_C = m_C(t+\\Delta t) - m_C(t) & = (J_E+J_W)\\Delta t \\label{1dcons}\\\\\n", "\\end{align}\n", "\n", "where both sides of the equation have dimensions of mass:\n", "* $m_C(t)~\\left[M\\right]$ is the mass in gridblock C at time $t$ and $m_C(t+\\Delta t)~\\left[M\\right]$ is the mass in gridblock C at time $t+\\Delta t$\n", "* $(J_E+J_W)\\Delta t~\\left[M\\right]$ is the net mass that fluxed into volume over time period $\\Delta t$.\n", "
\n", "
\n", "\n", "\n", "If we now go to 2-d and express this equation in terms of specific fluxes ${j}$, and recall that ${J}=jA$ where we multiply the net specific flux by the area of the boundary of volume perpendicular to the flux component (*eg* for fluxes in the $x$ direction, the area perpendicular is $\\Delta y \\Delta z$):
\n", "
\n", "
\n", "\\begin{align}\n", "\\left(m_C(t+\\Delta t) - m_C(t)\\right) = \\left\\{\\left(j_{EC} + j_{WC}\\right) \\Delta y \\Delta z + \\left(j_{NC} + j_{SC}\\right) \\Delta x \\Delta z \\right\\}\\Delta t \\label{7pde1}\\\\\n", "\\end{align}\n", "
\n", "
\n", "
\n", "
\n", "\n", "## Sign conventions\n", "\n", "\n", "The next step is to re-express the fluxes in the discrete approximation such as $j_{EC}$ in terms of components of a flux vector that varies continuously with location (here in 2-d) $\\vec{j}= \\left\\{j_x, j_y\\right\\}$ - the \"true\" flux that is approximated at gridblock edges by $j_{EC}$, etc. The only \"trick\" here is to be careful of the sign conventions.\n", "\n", "In contrast to our finite volume convention where fluxes such as $j_{EC}$ are **positive** for flux **into the volume**, in math, a vector component is **positive** if the vector is pointing in the direction in which the **coordinate direction corresponding to that component is increasing**.\n", "\n", "We'll demonstrate this for the $x$ direction here. Consider gridblock C where the left (W) face is located at $x$ and the right (E) face is located a position $x+\\Delta x$. First, recognize that both $j_{WC}$ and $j_{EC}$ are $x$ flux components.\n", "\n", "\"pic03\"\n", "\n", "Here is the correspondence:\n", "\n", "* $j_{WC}$ corresponds to $j_x(x,y,z)$ because when $j_x$ is positive, flux enters C, just like $j_{WC}$\n", "* $j_{EC}$ corresponds to $-j_x(x+\\Delta x,y,z)$ because when $-j_x$ is positive flux enters C, just like $j_{EC}$\n", "\n", "
\n", "
\n", "
\n", "Example, for some hypothetical situation, $j_x(x,y,z) = 3~mg/(s\\cdot m^2)$ and $j_x(x+\\Delta x,y,z) = -2.5~mg/(s\\cdot m^2)$, then\n", "* on the W face, $j_x$ is directed in the positive $x$ direction, so is flowing into C, so $j_{WC} = j_x(x,y,z) = 3~ mg/(s\\cdot m^2)$\n", "* on the E face, $j_x$ is directed in the negative $x$ direction, so is flowing into C, so $j_{EC} = -j_x(x+\\Delta x,y,z) = 2.5 ~mg/(s\\cdot m^2)$\n", "\n", "
\n", "
\n", "\n", "## Upshot\n", "In our conservation statement \\ref{7pde1}, we replace $j_{WC}\\rightarrow j_x(x,y,z)$ and $j_{EC} \\rightarrow -j_x(x+\\Delta x,y,z)$. Similarly, in the $y$ direction $j_{SC}\\rightarrow j_y(x,y,z)$ and $j_{NC} \\rightarrow -j_y(x,y+\\Delta y,z)$\n", "

\n", "The conservation statement \\ref{7pde1} becomes:
\n", "\n", "\\begin{align}\n", "m_C(t+\\Delta t) - m_C(t) = \\left\\{\\left(-j_x(x+\\Delta x,y,z)+j_x(x,y,z) \\right) \\Delta y \\Delta z + \\left(-j_y(x,y+\\Delta y,z) + j_y(x,y,z)\\right) \\Delta x \\Delta z \\right\\}\\Delta t \\label{7pde2}\\\\\n", "\\end{align}\n", "\n", "## Per unit volume, per unit time\n", "\n", "
\n", "
\n", "Next, divide the equation by the volume of the control volume (gridblock), $(\\Delta x)(\\Delta y) (\\Delta z)$ and time interval $(\\Delta t)$:\n", "

\n", "\\begin{align}\n", "{m_C(t+\\Delta t) - m_C(t)\\over (\\Delta t)(\\Delta x)(\\Delta y) (\\Delta z)}\n", "= {-j_x(x+\\Delta x,y,z)+j_x(x,y,z) \\over \\Delta x} + {-j_y(x,y+\\Delta y,z) + j_y(x,y,z)\\over \\Delta y} \\label{7pde3}\\\\\n", "\\end{align}\n", "

\n", "Because concentration is mass over volume, in \\ref{7pde3} we can substitute concentration $c$ for $m_C$, mass in the control volume C. If we substitute ${m_C\\over (\\Delta x)(\\Delta y) (\\Delta z)}\\rightarrow c$:\n", "


\n", "\n", "\\begin{align}\n", "{ c(t+\\Delta t) - c(t)\\over \\Delta t}\n", "= { -j_x(x+\\Delta x,y,z)+j_x(x,y,z) \\over \\Delta x} + { -j_y(x,y+\\Delta y,z) + j_y(x,y,z) \\over \\Delta y} \\label{7pde4}\\\\\n", "\\end{align}\n", "

" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Your turn\n", "Answer the following questions in this cell:\n", "\n", "1. What are the dimensions of each term in the conservation equation above \\ref{7pde4}? $\\left[ DIMENSIONS~HERE\\right]$\n", "2. Does this term ${ c(t+\\Delta t) - c(t)\\over \\Delta t}$ remind you of anything from calculus? What? **type answer here**\n", "3. Does this term ${-j_y(x,y+\\Delta y,z) + j_y(x,y,z)\\over \\Delta y}$ remind you of anything from calculus? What? **type answer here**\n", "\n", "


\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Partial differential equation\n", "\n", "The conservation equation \\ref{7pde4} is an algebraic equation that applies to a finite-sized control volume C. When we divided by volume and time, we re-expressed the expression on a per unit volume, per unit time basis. Next, we are going to take limits and shrink the volume and time to infinitesimals. In the process, the equation will transform from an algebraic equation to a differential equation. Up to now, we have been considering finite-sized volumes and fluxes in and out over time periods, with a differential equation, we can think of fluxes in and out of mathematical points over instances in time.\n", "\n", "

\n", "\n", "Recognize\n", "\\begin{align}\n", "&\\lim_{\\Delta t, \\Delta x,\\Delta y,\\Delta z \\rightarrow 0} { c(t+\\Delta t) - c(t)\\over \\Delta t} = {\\partial c\\over \\partial t}\\\\\n", "&\\\\\n", "&\\lim_{\\Delta t, \\Delta x,\\Delta y,\\Delta z \\rightarrow 0}{-j_x(x+\\Delta x,y,z)+j_x(x,y,z) \\over \\Delta x}= -{\\partial j_x\\over \\partial x}\\\\\n", "&\\\\\n", "&\\lim_{\\Delta t, \\Delta x,\\Delta y,\\Delta z \\rightarrow 0}{-j_y(x,y+\\Delta y,z)+j_y(x,y,z) \\over \\Delta y}= -{\\partial j_y\\over \\partial y}\\\\\n", "\\end{align}\n", "\n", "


\n", "So the algebraic equation becomes the **partial differential equation** (pde)\n", "

\n", "\\begin{align}\n", "{\\partial c\\over \\partial t} &= -{\\partial j_x\\over \\partial x}-{\\partial j_y\\over \\partial y} \\label{7pde5}\\\\\n", "\\end{align}\n", "

\n", "# Conservation of mass equation in 3 dimensions\n", "In three dimensions, (Cartesian coordinates):\n", "

\n", "\\begin{align}\n", "{\\partial c\\over \\partial t} &= -{\\partial j_x\\over \\partial x}-{\\partial j_y\\over \\partial y}-{\\partial j_z\\over \\partial z} \\label{7pde6}\\\\\n", "\\end{align}\n", "

\n", "## Interpretation\n", "You can interpret this pde just the way we interpreted our finite-volume conservation statements:\n", "\\begin{align}\n", "\\overbrace{\\partial c\\over \\partial t}^\\text{rate of mass change at point} &= \\underbrace{-{\\partial j_x\\over \\partial x}-{\\partial j_y\\over \\partial y}-{\\partial j_z\\over \\partial z}}_\\text{net flux rate into a point} \\label{7pde7}\\\\\n", "\\end{align}\n", "

\n", "\n", "The left side is the rate of change of mass per unit volume at a point, and the right hand side (the sum of the terms) is the net rate at which mass is fluxing into the point per unit volume.\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Your turn\n", "Answer the question in this cell.\n", "1. What are the dimensions of each term in the pde \\ref{7pde7}? Do those dimensions agree with the description above?\n", "\n", "The dimensions are $\\left[\\text{Replace with correct dimensions}\\right]$" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Divergence of a vector\n", "\n", "The **divergence** of a flux vector $\\vec{j}=(j_x, j_y, j_z)$ is a **number**, defined as\n", "\\begin{align}\n", "\\text{divergence of }\\vec{j} &= {{\\partial j_x\\over \\partial x}+{\\partial j_y\\over \\partial y}+{\\partial j_z\\over \\partial z}} \\label{7pde8}\\\\\n", "\\end{align}\n", "

\n", "In pictures, the divergence is the rate per unit volume at which a flux is spreading **out** from a point. In the picture below, the lines indicate flux directions. On the left, flux is diverging from the point, so at that point it is **positive**. On the right, flux is converging to a point, so the divergence is **negative**.\n", "\"pic04\"\n", "

" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Your turn\n", "Answer the question in this cell.\n", "\n", "1. What does it mean if at a point, the divergence of the flux is zero ${{\\partial j_x\\over \\partial x}+{\\partial j_y\\over \\partial y}+{\\partial j_z\\over \\partial z}}=0$?" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Vector notation\n", "The divergence is a concept from vector calculus and is found in most pdes that describe conservation laws. Accordingly it gets a special *nabla*, $\\nabla$, notation (see https://en.wikipedia.org/wiki/Del):\n", "\\begin{align}\n", "\\vec{\\nabla} \\cdot \\vec{j} = \\text{div}~\\vec{j} = \\text{divergence of }\\vec{j} &= {{\\partial j_x\\over \\partial x}+{\\partial j_y\\over \\partial y}+{\\partial j_z\\over \\partial z}} \\label{7pde9}\\\\\n", "\\end{align}\n", "

\n", "The nabla $\\vec{\\nabla}$ is a vector - calculus operator: it takes action \"operates\" on an argument. In Cartesian coordinates, it is often written as a vector:\n", "

\n", "\\begin{align}\n", "\\vec{\\nabla} &= \\left({{\\partial \\over \\partial x},{\\partial \\over \\partial y},{\\partial \\over \\partial z}}\\right) \\label{7pde10}\\\\\n", "\\end{align}\n", "

\n", "**Divergence of a flux** : the nabla vector maps a flux vector to a scalar number, the divergence (the net flux rate per unit volume):\n", "\n", "\\begin{align}\n", "\\vec{\\nabla} \\cdot \\vec{j} =\\left({{\\partial \\over \\partial x},{\\partial \\over \\partial y},{\\partial \\over \\partial z}}\\right) \\cdot \\left\\{\\begin{array}{c}\n", "j_x\\\\\n", "j_y\\\\\n", "j_z\\\\\n", "\\end{array}\\right\\} = {{\\partial j_x\\over \\partial x}+{\\partial j_y\\over \\partial y}+{\\partial j_z\\over \\partial z}}\n", "\\label{7pde11}\n", "\\end{align}\n", "



\n", "**Gradient of a scalar**\n", "\n", "A scalar is a single-valued function: at each point it has one value, unlike a flux which is a vector function - at each point it has 3 components (in a 3-d system). The gradient operator takes a scalar function and produces a vector that points in the direction in which the function is increasing. The nabla notation is used for the gradient (here for the case of concentration $c$):\n", "\\begin{align}\n", "\\vec{\\nabla} c &= \\left({{\\partial c \\over \\partial x},{\\partial c \\over \\partial y},{\\partial c \\over \\partial z}}\\right) \\label{7pde12}\\\\\n", "\\end{align}\n", "

\n", "\n", "The latter is sometimes written as:\n", "\\begin{equation}\n", "\\vec{\\nabla} c = \\overrightarrow{\\text{grad}} c\n", "\\end{equation}\n", "**Fick's law**\n", "\n", "Fick's law of diffusion says that the diffusive flux $\\vec{j}$ is a vector that points in the opposite direction of the concentration gradient. We can now write Fick's law in vector-calculus nabla notation:\n", "\\begin{align}\n", "\\vec{j} = -D \\vec{\\nabla} c &= \\left({-D {\\partial c \\over \\partial x},-D {\\partial c \\over \\partial y},-D {\\partial c \\over \\partial z}}\\right) \\label{7pde13}\\\\\n", "\\end{align}\n", "where $D~\\left[L^2/T\\right]$ is the diffusion coefficient.\n", "

\n", "That is, each component of the diffusive flux is:\n", "\\begin{align}\n", "j_x &= - D {\\partial c \\over \\partial x}\\\\\n", "j_y &= - D {\\partial c\\over \\partial y}\\\\\n", "j_z &= - D {\\partial c\\over \\partial z}\\\\\n", "\\end{align}\n", "


\n", "## Why $\\vec{\\nabla}$?\n", "\n", "Why bother with the nabla notation? **Clarity**. Using the nabla notation, we clear up the clutter with partials here and there and make the connection to a conservation law very clear. Our conservation PDE becomes:\n", "

\n", "

\n", "\\begin{align}\n", "{\\partial c\\over \\partial t} &= -{\\partial j_x\\over \\partial x}-{\\partial j_y\\over \\partial y}-{\\partial j_z\\over \\partial z} \\quad\\quad\\rightarrow\\quad\\quad {\\partial c\\over \\partial t}= -\\vec{\\nabla} \\cdot \\vec{j} \\label{7pde14}\\\\\n", "\\end{align}\n", "

\n", "In the righthand form of the equation, we can quickly see the divergence of a flux and \"read\" the equation quickly. If you see the divergence of a flux, then you are looking at a conservation statement.\n", "

" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Diffusion equation\n", "We can now put this all together to get the diffusion equation. That is, we substitute components of Fick's law \\ref{7pde13} into the conservation of mass equation \\ref{7pde6}:\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} = {\\partial \\over \\partial x}\\left( D {\\partial c \\over \\partial x}\\right) + {\\partial \\over \\partial y}\\left( D {\\partial c \\over \\partial y}\\right)+ {\\partial \\over \\partial z}\\left( D {\\partial c \\over \\partial z}\\right) \\label{7pde15}\\\\\n", "\\text{or}&\\nonumber\\\\\n", "&{\\partial c\\over \\partial t} = \\vec{\\nabla} \\cdot (D \\vec{\\nabla} c)\\label{7pde16}\\\\\n", "\\end{align}\n", "

\n", "\n", "which can also be written as\n", "\\begin{equation}\n", "\\frac{\\partial c}{\\partial t} = \\text{div} (D \\overrightarrow{\\text{grad}} c)\n", "\\end{equation}\n", "\n", "These notations are used in everywhere the scientific literature, that's why we are introducing them. But you should be able to make the link between them, and most importantly, relate to the mass-balance problem from which we have started them.\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Your turn\n", "\n", "Modify this transient 3-d diffusion equation into the steady-state 2-d ($x$ and $y$ dimensions) equation:\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} = {\\partial \\over \\partial x}\\left( D {\\partial c \\over \\partial x}\\right) + {\\partial \\over \\partial y}\\left( D {\\partial c \\over \\partial y}\\right)+ {\\partial \\over \\partial z}\\left( D {\\partial c \\over \\partial z}\\right) \\label{7pde17}\\\\\n", "\\end{align}\n", "

\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Constant diffusion coefficient\n", "\n", "If the diffusion coefficient does not vary with position (is spatially homogeneous), we can simplify terms in the equation. For example by the chain rule:\n", "

\n", "\\begin{align}\n", "{\\partial \\over \\partial x}\\left( D {\\partial c \\over \\partial x}\\right)= {\\partial D \\over \\partial x}{\\partial c \\over \\partial x} + D{\\partial^2 c \\over \\partial x^2}= 0 + D {\\partial^2 c\\over \\partial x^2} \\label{7pde18}\\\\\n", "\\end{align}\n", "

\n", "since if $D$ is homogeneous, it is not a function of $x$, $y$, or $z$ so ${\\partial D\\over\\partial x}= {\\partial D\\over\\partial y}={\\partial D\\over\\partial z}=0$ and the equation becomes\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} = D{\\partial^2 c \\over \\partial x^2}+ D{\\partial^2 c\\over \\partial y^2}+ D{\\partial^2 c\\over \\partial z^2} \\label{7pde19}\\\\\n", "\\end{align}\n", "

\n", "This equation is sometimes written using nabla notation as:\n", "\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} = D \\nabla^2 c \\label{7pde20}\\\\\n", "\\end{align}\n", "

\n" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Diffusion in porous media\n", "\n", "Earlier in `5.1_finite_volume_3.ipynb` we saw that Fick's law of diffusion in porous media is (given here in vector notation):\n", "\\begin{align}\n", "\\vec{j} = -D\\theta\\vec{\\nabla} c c \\label{7pde21}\\\\\n", "\\end{align}\n", "

\n", "where $\\theta$ is the porosity.\n", "

\n", "To develop the PDE for diffusion in porous media, we have to change the storage term. If the entire control volume is filled with water, then for a dissolved solute like sulfate, the mass of sulfate is the concentration $\\times$ volume of the control volume:\n", "\\begin{align}\n", "m_C =c (\\Delta x)(\\Delta y)(\\Delta z) \\\\\n", "\\end{align}\n", "

\n", "However, in porous media, when the pores are fully saturated with water, the volume of water in the gridblock is porosity $\\times$ total volume: $\\theta (\\Delta x)(\\Delta y)(\\Delta z)$, so the mass of solute in the water in the gridblock is the volume of water $\\times$ the concentration in the water: $c \\theta (\\Delta x)(\\Delta y)(\\Delta z)$.\n", "

\n", "Upshot: In our derivation above, wherever we have $m_C$ we substitute $c\\theta (\\Delta x)(\\Delta y)(\\Delta z)$ the result is in our PDE we make this change:\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} \\rightarrow {\\partial \\theta c\\over \\partial t} \\label{7pde201}\\\\\n", "\\end{align}\n", "

\n", "And the equation for diffusion in porous media becomes:\n", "

\n", "\\begin{align}\n", "&{\\partial \\theta c\\over \\partial t} = {\\partial \\over \\partial x}\\left( D\\theta {\\partial c \\over \\partial x}\\right) + {\\partial \\over \\partial y}\\left( D\\theta {\\partial c \\over \\partial y}\\right)+ {\\partial \\over \\partial z}\\left( D \\theta {\\partial c \\over \\partial z}\\right) \\label{7pde22}\\\\\n", "\\text{or}&\\nonumber\\\\\n", "&{\\partial \\theta c\\over \\partial t} = \\nabla \\cdot (D \\theta \\nabla c)\\label{7pde23}\\\\\n", "\\end{align}\n", "

\n", "## For homogeneous porosity\n", "If porosity is spatially homogeneous, much as above when the diffusion coefficient was homogeneous (constant in space and time) it is not a function of the independent variables $x$, $y$, $z$ and $t$ so we can pull it out of the derivatives:${\\partial \\theta c\\over \\partial t}\\rightarrow \\theta{\\partial c\\over \\partial t}$ and ${\\partial \\over \\partial x}\\left( D\\theta {\\partial c \\over \\partial x}\\right)\\rightarrow \\theta {\\partial \\over \\partial x}\\left( D {\\partial c \\over \\partial x}\\right)$ and divide through both sides to get\n", "

\n", "\\begin{align}\n", "&{\\partial c\\over \\partial t} = {\\partial \\over \\partial x}\\left( D {\\partial c \\over \\partial x}\\right) + {\\partial \\over \\partial y}\\left( D {\\partial c \\over \\partial y}\\right)+ {\\partial \\over \\partial z}\\left( D {\\partial c \\over \\partial z}\\right) \\label{7pde24}\\\\\n", "\\end{align}\n", "

\n", "Surprise! For the case of homogeneous porosity, the equation is the same! However, if you are calculating fluxes between gridblocks, you have to use Fick's law for porous media, $\\vec{j} = -D\\theta \\nabla c$." ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Solving PDEs: Boundary - value problems\n", "\n", "The solution to a partial differential equation is a function in space (and time if transient) in a specified domain. Most courses on differential equations focus on methods to determine analytical (sometimes called closed-form) solutions, whereas in this course we focus on discrete approximations. Solving a partial differential equation requires that we establish a so-called boundary-value problem. This is a common-sense collection of information required before we solve the problem.\n", "\n", "## Boundary-value problem checklist\n", "To solve a boundary value problem requires:\n", "1. knowledge of the equation(s) that govern the dependent variable(s).\n", "2. specification of the problem domain.\n", "3. specification of properties of the problem domain.\n", "4. specification of the value of the dependent variable or its derivatives everywhere on the boundary.\n", "5. for time-dependent problems: ** initial conditions** - specification of the value of the dependent variables at the beginning of period of analysis.\n", "\n", "\n", "## TMF BVP example\n", "\n", "We were asked to compute the steady-state concentration profile beneath the pond where the concentration at 2 m depth was fixed at $c=2000~mg/L$ and at the pond-sediment interface $c=93~mg/L$. The sulfate moved by diffusion only, and there were no sources or sinks. Let's go through the check list." ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Equation\n", "This is a diffusion problem. We argued that because we were looking at a vertical profile in the middle of a large pond, the concentration only varies in one dimension (the vertical). Let's say $z$ is the vertical direction. Because the problems is steady, we know ${\\partial c\\over\\partial t} = 0$. So the equation for steady-state one-dimensional diffusion is:\n", "

\n", "\\begin{align}\n", "{\\partial \\over \\partial z}\\left( D {\\partial c \\over \\partial z}\\right) =0 \\label{7pde25}\\\\\n", "\\end{align}\n", "

\n", "\n", "Note that $c$ varies with $z$ only - it is one-dimensional and since it is steady, it does not vary with time. Therefore since in this case concentration is a function of one variable alone, we don't need partials and can also write\n", "

\n", "\\begin{align}\n", "{d\\over d z}\\left( D {d c \\over d z}\\right) =0 \\label{7pde26}\\\\\n", "\\end{align}\n", "

\n", "Because the diffusion coefficient is spatially homogeneous, we can pull it out of the derivative (as above):\n", "

\n", "\\begin{align}\n", "D{d^2 c \\over d z^2} =0 \\label{7pde27}\\\\\n", "\\end{align}\n", "

\n", "Finally dividing both sides by the diffusion coefficient $D$ we have:\n", "

\n", "\\begin{align}\n", "{d^2 c \\over d z^2} =0 \\label{7pde28}\\\\\n", "\\end{align}\n", "

" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Domain\n", "\n", "The figure below shows the domain: the 1-D vertical profile under the middle of the pond:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "lines_to_next_cell": 0 }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACPAAAAQ0CAYAAAD6oHBmAAAKN2lDQ1BzUkdCIElFQzYxOTY2LTIuMQAAeJydlndUU9kWh8+9N71QkhCKlNBraFICSA29SJEuKjEJEErAkAAiNkRUcERRkaYIMijggKNDkbEiioUBUbHrBBlE1HFwFBuWSWStGd+8ee/Nm98f935rn73P3Wfvfda6AJD8gwXCTFgJgAyhWBTh58WIjYtnYAcBDPAAA2wA4HCzs0IW+EYCmQJ82IxsmRP4F726DiD5+yrTP4zBAP+flLlZIjEAUJiM5/L42VwZF8k4PVecJbdPyZi2NE3OMErOIlmCMlaTc/IsW3z2mWUPOfMyhDwZy3PO4mXw5Nwn4405Er6MkWAZF+cI+LkyviZjg3RJhkDGb+SxGXxONgAoktwu5nNTZGwtY5IoMoIt43kA4EjJX/DSL1jMzxPLD8XOzFouEiSniBkmXFOGjZMTi+HPz03ni8XMMA43jSPiMdiZGVkc4XIAZs/8WRR5bRmyIjvYODk4MG0tbb4o1H9d/JuS93aWXoR/7hlEH/jD9ld+mQ0AsKZltdn6h21pFQBd6wFQu/2HzWAvAIqyvnUOfXEeunxeUsTiLGcrq9zcXEsBn2spL+jv+p8Of0NffM9Svt3v5WF485M4knQxQ143bmZ6pkTEyM7icPkM5p+H+B8H/nUeFhH8JL6IL5RFRMumTCBMlrVbyBOIBZlChkD4n5r4D8P+pNm5lona+BHQllgCpSEaQH4eACgqESAJe2Qr0O99C8ZHA/nNi9GZmJ37z4L+fVe4TP7IFiR/jmNHRDK4ElHO7Jr8WgI0IABFQAPqQBvoAxPABLbAEbgAD+ADAkEoiARxYDHgghSQAUQgFxSAtaAYlIKtYCeoBnWgETSDNnAYdIFj4DQ4By6By2AE3AFSMA6egCnwCsxAEISFyBAVUod0IEPIHLKFWJAb5AMFQxFQHJQIJUNCSAIVQOugUqgcqobqoWboW+godBq6AA1Dt6BRaBL6FXoHIzAJpsFasBFsBbNgTzgIjoQXwcnwMjgfLoK3wJVwA3wQ7oRPw5fgEVgKP4GnEYAQETqiizARFsJGQpF4JAkRIauQEqQCaUDakB6kH7mKSJGnyFsUBkVFMVBMlAvKHxWF4qKWoVahNqOqUQdQnag+1FXUKGoK9RFNRmuizdHO6AB0LDoZnYsuRlegm9Ad6LPoEfQ4+hUGg6FjjDGOGH9MHCYVswKzGbMb0445hRnGjGGmsVisOtYc64oNxXKwYmwxtgp7EHsSewU7jn2DI+J0cLY4X1w8TogrxFXgWnAncFdwE7gZvBLeEO+MD8Xz8MvxZfhGfA9+CD+OnyEoE4wJroRIQiphLaGS0EY4S7hLeEEkEvWITsRwooC4hlhJPEQ8TxwlviVRSGYkNimBJCFtIe0nnSLdIr0gk8lGZA9yPFlM3kJuJp8h3ye/UaAqWCoEKPAUVivUKHQqXFF4pohXNFT0VFysmK9YoXhEcUjxqRJeyUiJrcRRWqVUo3RU6YbStDJV2UY5VDlDebNyi/IF5UcULMWI4kPhUYoo+yhnKGNUhKpPZVO51HXURupZ6jgNQzOmBdBSaaW0b2iDtCkVioqdSrRKnkqNynEVKR2hG9ED6On0Mvph+nX6O1UtVU9Vvuom1TbVK6qv1eaoeajx1UrU2tVG1N6pM9R91NPUt6l3qd/TQGmYaYRr5Grs0Tir8XQObY7LHO6ckjmH59zWhDXNNCM0V2ju0xzQnNbS1vLTytKq0jqj9VSbru2hnaq9Q/uE9qQOVcdNR6CzQ+ekzmOGCsOTkc6oZPQxpnQ1df11Jbr1uoO6M3rGelF6hXrtevf0Cfos/ST9Hfq9+lMGOgYhBgUGrQa3DfGGLMMUw12G/YavjYyNYow2GHUZPTJWMw4wzjduNb5rQjZxN1lm0mByzRRjyjJNM91tetkMNrM3SzGrMRsyh80dzAXmu82HLdAWThZCiwaLG0wS05OZw2xljlrSLYMtCy27LJ9ZGVjFW22z6rf6aG1vnW7daH3HhmITaFNo02Pzq62ZLde2xvbaXPJc37mr53bPfW5nbse322N3055qH2K/wb7X/oODo4PIoc1h0tHAMdGx1vEGi8YKY21mnXdCO3k5rXY65vTW2cFZ7HzY+RcXpkuaS4vLo3nG8/jzGueNueq5clzrXaVuDLdEt71uUnddd457g/sDD30PnkeTx4SnqWeq50HPZ17WXiKvDq/XbGf2SvYpb8Tbz7vEe9CH4hPlU+1z31fPN9m31XfKz95vhd8pf7R/kP82/xsBWgHcgOaAqUDHwJWBfUGkoAVB1UEPgs2CRcE9IXBIYMj2kLvzDecL53eFgtCA0O2h98KMw5aFfR+OCQ8Lrwl/GGETURDRv4C6YMmClgWvIr0iyyLvRJlESaJ6oxWjE6Kbo1/HeMeUx0hjrWJXxl6K04gTxHXHY+Oj45vipxf6LNy5cDzBPqE44foi40V5iy4s1licvvj4EsUlnCVHEtGJMYktie85oZwGzvTSgKW1S6e4bO4u7hOeB28Hb5Lvyi/nTyS5JpUnPUp2Td6ePJninlKR8lTAFlQLnqf6p9alvk4LTduf9ik9Jr09A5eRmHFUSBGmCfsytTPzMoezzLOKs6TLnJftXDYlChI1ZUPZi7K7xTTZz9SAxESyXjKa45ZTk/MmNzr3SJ5ynjBvYLnZ8k3LJ/J9879egVrBXdFboFuwtmB0pefK+lXQqqWrelfrry5aPb7Gb82BtYS1aWt/KLQuLC98uS5mXU+RVtGaorH1futbixWKRcU3NrhsqNuI2ijYOLhp7qaqTR9LeCUXS61LK0rfb+ZuvviVzVeVX33akrRlsMyhbM9WzFbh1uvb3LcdKFcuzy8f2x6yvXMHY0fJjpc7l+y8UGFXUbeLsEuyS1oZXNldZVC1tep9dUr1SI1XTXutZu2m2te7ebuv7PHY01anVVda926vYO/Ner/6zgajhop9mH05+x42Rjf2f836urlJo6m06cN+4X7pgYgDfc2Ozc0tmi1lrXCrpHXyYMLBy994f9Pdxmyrb6e3lx4ChySHHn+b+O31w0GHe4+wjrR9Z/hdbQe1o6QT6lzeOdWV0iXtjusePhp4tLfHpafje8vv9x/TPVZzXOV42QnCiaITn07mn5w+lXXq6enk02O9S3rvnIk9c60vvG/wbNDZ8+d8z53p9+w/ed71/LELzheOXmRd7LrkcKlzwH6g4wf7HzoGHQY7hxyHui87Xe4Znjd84or7ldNXva+euxZw7dLI/JHh61HXb95IuCG9ybv56Fb6ree3c27P3FlzF3235J7SvYr7mvcbfjT9sV3qID0+6j068GDBgztj3LEnP2X/9H686CH5YcWEzkTzI9tHxyZ9Jy8/Xvh4/EnWk5mnxT8r/1z7zOTZd794/DIwFTs1/lz0/NOvm1+ov9j/0u5l73TY9P1XGa9mXpe8UX9z4C3rbf+7mHcTM7nvse8rP5h+6PkY9PHup4xPn34D94Tz+49wZioAAAAJcEhZcwAALiMAAC4jAXilP3YAACAASURBVHic7N0HmBvV1cbxKxMb07vpvfcqIUroNZTQO6H3BAIh9JZAKKEEQg0lH713CDHdJhRFovcOoZjem3HT9x5mNlnMauaONDNa7f5/z3Oeka07956RtOvV6vjcn9XrdQcAAAAA/VW5WJpYh+HtziNjr1Rq1W2SnKDHZUYdbm1yvZ203rNNnpsLXd+vddgh4WkH67ruS2n99XU4Oo252uQbPRartDsJAM3R96AhOvwjZlhFX+e/ySMfAAAAAADg3M/anQAAAAAAtNkAxTLtTiJjg5o4Z0LX/OOypaJXF/DIPooFEp4zVYrrT+M6+3X3ZbsTANCSgS7+e9CneSQCAAAAAAACFPAAAAAAANK2ueLIdifRSLlYWtIlL94BAAAAAAAAgMxQwAMAAAAASNv85WJp8Uqt+lS7E2lgq3YnAAAAAAAAAADdUcADAAAAAMiCdeHpdQU85WKp4IItvgAAAAAAAACg16CABwAAAACQBSvgOaLdSfRgOcXs7U4CAAAAAAAAALqjgAcAAAAAkIX5euk2WmyfBQAAAAAAAKDXoYAHAAAAAJCVXrWNVrlYmsAFOQEAAAAAAABAr0IBDwAAAID+bozi6gznn1OxrMe4OxRfZpTDWxnNG6e3baO1qmKGdieRUJavi1Z81+4EAAAAAAAAgL6EAh4AAAAA/VqlVh2pw9ZZzV8ulnZwfgU8ByqXF7LKo01sG60ldF1PtjuRUCdun/U7PX4vtjsJAAAAAAAAANmigAcAAAAAkCXrwtP2Ap5ysTRIh03anQcAAAAAAAAA9IQCHgAAAABAKx5XLBVxvxXwHJ5TLlHWVkzV7iQAAAAAAAAAoCcU8AAAAAAAWnGtiy7gmbeXbKMVtU3aV4p3FQvklAsAAAAAAAAA/AgFPAAAAACAVlgBzwmKQsSYtm6jVS6WJtZhg4ghtygWzikdAAAAAAAAAPgJCngAAAAAAK34j+LfinLEmHZvo2XFO5NG3H+V4riccgEAAAAAAACAn6CABwAAAADQKuvCE1XA0+5ttLaKuO9jxd2OAh4AAAAAAAAAbUQBDwAAAACgVdcpTlEMiBizhWvDNlrlYmlKHdaNGHJ9pVYdrXF5pQQAAAAAAAAAP0EBDwAAAACgJZVa9Z1ysfSwbq4YMcy20Tosp5S621gxYcT9V+WVCAAAAAAAAAA0QgEPAAAAACANto1WVAHPPOViaclKrfpEXgmForbPekfxYF6JoLPp9VvQYdowJlKMU3yreF+v6y/bmVsrdF12LUMUkygGK0YqvlZ8quv6up25pU3XOlCHGRVTKOy2Xas9hx/qWr9tZ25J6Drs93kzKKzD2CDFaMVnLngtjmlnbgAAAAAAoHkU8AAAAAAA0nC94nQXvY2WdeHJrYCnXCxZUcJqEUOurtSq4/LKB/nS82+vxUERQ8bp+R8Vcb4V7Kyg2FCxsmIRxcQNxn7sgi3irBPVnYpHNHe9ydQzozwn1WENF1yX7Ru3gGI6RaHBeLuu1xT/VjykuE/X9XFOuU7YKK/Q93GPseaY3gXP3yqKpRVzu55/FzZOY62g7ynFA4qhmvvZZvLOQrgV4C8Uq9sfFfO6oABpfLYd4AsueK5uUdxLQQ8AAAAAAJ2DAh4AAAAAQMsqtep75WLJPvheJWJY3ttobeai3/eyfVbfZkU390XcX3NBEcuP6HU8gQ47KA5WzOe5lnXlWSOMoxT/0Tzn6Xiuvja+SJJ02sLrWVexu2ItF72l3Pi6Og4tq9jXBQUi9+p4meL6qAKoFDzqgqKpRuZxQXHRTyjHlXQ4QLGe8/vdlxV7zRbGBoqTNYcVZJ2ruETX+X2CvFOjHJbT4beKjVx0MVoXK+pZLIy9FLa9oRVWnq1rGJlZogAAAAAAIBUU8AAAAAAA0mLbaK0ScX/e22hFbZ/1kvJ4PKc80CH0+rSCkf9TLNPiVLMrTlAcqDmP0/GsvDuhhB2I7GvgaOdfiBTHCkTWCeMkrfEnHS/sLV1elI912DnLBfm1agnF3xRHat7DdY2XpjCnF61nnZFOc0HhVStmUZyi2ENz/lrXcFfLyQEAAAAAgMxQwAMAAAAASMsNijMVE0SM2cLlsI1WuVia1QXbBDVyddY5oLPoNbOtDhcoJkpx2mkUf1Fsp/m3qdSqL6c4d0NhIdKFLuickxUrDrEONXtqvZ3bXRCnHHZ0QfHOJClPbdd5iea371076Do/SXn+/wq7JVnnJyu68um448u23Bqq+U/S8Qhdw9gU5wYAAAAAACmhgAcAAAAAkIpKrfphuVi63wXbCDVi22gdmkM6W7pgW5xG2D4L/6XX7X4uKLQpZLTE0opHtc5W+jq5I6M1fqA1bMslK9RIswAkyuKKh7Xugbq2s3Ja87+0rj1nJyoOyngp247LrnNVXeeItCfXvFO4oLAwje5BPbHH6RDFQmExEgAAAAAA6GUo4AEAAAAApMm20Yoq4Jm7XCwtlUO3jqjtsx7X+i9lvD46hF6Pe7psi3e6TKa4VetZF5cr0p5c806ow0WKbdOe24OtfaZ9beu4W84dXk5X7JvTWrYV2e26zhV1jd+mNanmm1aHu12wbVfWNlRcr9gnh7UAAAAAAEACFPAAAAAAANJ0o+JsxcCIMdaFJ7MCnnKxZB+yLx0xhO47+IFeK2u6YNsln+KdLxXPKz4O/2xFFwsopkywpG2RZNsxfV2pVW9JkmsUzTdYh5sVa6c1Z5N2UkwZdhoalfViWse67uRVvNNlScUfFL9PYzJdw6Q63OnyKd7psr7i6xzXAwAAAAAAHijgAQAAAACkplKrflIulu510dvAZL2NVlT3nXEu2KYGmN4FxVwTRIz5XnG54mLFw3p9j+t+p17rtk3bMortXVC8MonHurbeFTq3rPmebSLvHwlzsNd00uKdDxT/UAxXvBD++RvFRIohLihOWtkFxR4zJZh3Y8Wlymub8R+vlK2qON5j3GjFU4qnFe8orHOOdQyaRrGYoqSYOOHav9X1/V3X90LC83pysWKpBOPHKO5SDFU85v53TXYNs7igEGidMKIKKaO+TwIAAAAAgDaggAcAAAAAkDbbRiuqgCfrbbSiPph+UOu+k9G66CyzxdxvxS2/1uvlzUYDwgKVqoVe0yfoeJpiS4+1rdDnap2zjOYY6ZlvI8cpfplgvBUNHau4SWuPbjDGvkbs6/NK5Wi/O9pAcbRicc817DF4UXFMgrySssc6qvjK8j9TcbOu8/NGg3R99lxY0dFhigU91/5ZOH57z/GN1rbt2zb1HG6FO+crjtf1vNtgzFuKhxXnaG4rujpEYWtEFfIAAAAAAIBeggIeAAAAAEDabCuf8xSDIsZs4TLYRqtcLFmBQdSH8GyfhThWlHOw4tRKrVr3PUljR+iwlV6Dw1xQOBL3O5eFXdCJ6ugm87TXu3WhOdhz+KhwrZOV61jfNTTWCkdu0lq25ddvFX9SDPY49Uh7LHT+MN+1Epqswd+/7YI8b/J5/jTGug5drlzte0PX8+Hz+7ItdM5vreuYb8Ld6dyZdTjJc7gV5myttR72nT98Pe6rdS52QYemeRMnCQAAAAAAckUBDwAAAAAgVZVa9bNysWRbvKwfMWwzF3SHSFtU9x3rNnJ9Bmui77DinR31Gr6s2Ql07nl6/dt2VNaJKu73Lgdp7IU65+2k6+g8K6KxjiwDPIZ/rNhY6zyYdJ0uYbeh07SuFZFYMc+QmFMsrws1flGd+12z6yZ0q+JXWu+LpCeGRU3HKd/nXFDwElWA6ML7rXvO+YmzDFgXpMk9xlk+a0d03Ylknc5suzbdvF2xXDNzAAAAAACAfFDAAwAAAADIghUvRBXw2DZaS1dq1cfSWlDzFVz09kV3a72P01ovJzPour5ucw4jO/Bxa9Z+rRTvdNEc1rFmL928IGaoFeEcqdi9iWV+o5jHY5x1iFldOT3dxBo/oXkqurbVdPN+xXQxw+dW/M4F23xlzZ63HcNCo6aFz90Ruvlnj+FruSYKeDT/fDr8ymPoG4o1ldN7SdfoTud/qjXX1c3hzn8bNAAAAAAAkDMKeAAAAAAAWbAOHSNd9FY7mytSK+AR6zIxZ8T9nbh91v3tTkDuUazZ7iRycHGlVj0rrck0l3WfWVk3t4sZur0VjGj8h75za/wkOhzkMdS2v9o0reKdLprvOeWwkW4OUwyMGX6gxp5tnbnSzGE8jyp2abV4p5tTFTu56O34zM+bnH8/xQQxY2zLs81bLd7pYl2J9DxsoJtPKaZKY04AAAAAAJAuCngAAAAAAKmr1Kpfloulobq5UcQwK+BJcxutqO2zvnVBURHQk7dc0NEmbb9VrOeiCyasyG1H59fxpcv2imk9xh2rr8XhCeb1pnkf1tf4Ubp5QszQKVzQYeikLPJwwbZnVrwzOq0JrRBI13aGbp4XM3SIxk2j8Z/4zh0WX23vMfSUNDuUGduqTevb6/zyNOcFAAAAAADpoIAHAAAAAJAV20YrqoBnrrS20dI81s1i84ght2udr1pdB33WIXp9pL5VmRV26LVphSsnxgzd0SUr4NnNY8yrLruimS7WqcY6DC0cM253PQ5/1uNRzyCHm9PuMBS6TXGuohAzbmYXbFPmy74nThYzxrasy+q5u9IFxWrLZjQ/AAAAAABoEgU8AAAAAICs2Afg1vlm4ogxaW2jZVsVzRhx/9UprIG+6RXFNRnOf77iSMUkEWMWLBdLi1Rq1WfjJtO4+XVYymPdEzTf9545NsW63iifP7r4x28uF2xx90gGafw9gznt2kbo2t7RzVljhk6XcOrNPMb83bqYJZzXixVR6bqsa9LNWcwPAAAAAACaRwEPAAAAACAT1tGkXCzd4aI/sN5cYw5NoTNH1PZZnyvuaHF+9F1n25ZJWU2uuT/Ta9y2b9smZugGitgCnnBcnI8UV3iMS8MNiv8oZo8Zt75Lv4DHumrdlfKc3T3v4gt44rrp/JdeB4N0WNNjaCZFSd3crnjbxV8bAAAAAADIEQU8AAAAAIAsWWeOqAIe68yxtOLRZhcIPxTfNGLITVl3IkHHssKda3NY5yYXX8CzhuIEj7nW8BhzfV6vea0zVl+DV+nmITFD11McnvLyD1kXoJTn7O5djzFRHcbGt5yL7sRkXtQ1vZRgzsTC5+xG3dwvy3UAAAAAAEAyFPAAAAAAALJknW++VkwaMca20Wq6gEfWUkwdcf9VLcyNvq1SqVXfy2Gd+xXWZaoQMWbZcrH0M+UzptEA3T/ABVtRxcl7eyRbL66AZ1HlP6l15kpx3Va+b/j40GPM4ATzLe8x5u4E87XCuvBQwAMAAAAAQC9CAQ8AAAAAIDOVWvXbcrFkHxRHbXG1mcYc0sI2WlFzf6C4r8l50fc9kMciem1/ote4dVVZIGKYdWZZUPFMxJi5FVPELGcFQA8ny7Bljym+VEweMcaKj5ZQPJjiui+mOFdPfIqNJkgw3zIeYyoJ5muFrTPWJcsfAAAAAABkiAIeAAAAAEDWbButqCKbprfRKhdLtn3NLyOGXGvbxSSdtxf5nWJEm3N4v83rZ+mRHNeywpyoAh6ziIsu4FnEY53nUu5yE8u6Bulr0b5+V4sZurhLt4DnzRTn6skojzFJCmAW9hjzVIL5mmavET1nz+nmYnmsBwAAAAAA4lHAAwAAAADI2lAX352j2W201nPR23N1+vZZd1Rq1ay7jPRnz+e41sseY+aNuX8ujznyvKburBgkroBntpTX9NniqhWjPcZEbYv2X7Y9mot//sYpXvOZLyXWFYoCHgAAAAAAegkKeAAAAAAAmarUqiPLxdKturldxLDNm9xGa+uI+95w+W1Hg85jxRlv5LjeOx5j4gpcZvGY41WPMVnwKTyZNeU1P0t5vvE1u61fT2ZQDIwZ84F9v0xxzTiv5LgWAAAAAACIQQEPAAAAACAPto1WVAHPnIplFDXfCcvF0hQ6rBsx5OomCoLQf3yY8/ZqPt1ihsTcP73HHO3a8sxnXZ/8k/g+5fmyNKPHmI8zz+LH3st5PQAAAAAAEIECHgAAAABAHu5yQbeMqSLG2DZa3gU8spFicMT9nb59FrKV9fZL4/vCY0zU14eZwmOOvK+ri0/xyUQprzkq5fmyFPfcmk8yz+LHPsp5PQAAAAAAEIECHgAAAABA5iq16qhysXSLbu4YMWwzjTk4QdecrSLue07zPOOdIPqjr3Nez6dbTFyByyQec3znMSYLPuumXcDTSR22JvUYk+f2WebznNcDAAAAAAARKOABAAAAAOTFttHaMeJ+7220ysXSdDqsETGE7juIk3exxGiPMQNbvN+0a1spn3V98u+reuNz10kdjAAAAAAA6PMo4AEAAAAA5OVeF2wRM03EGN9ttDZzjd/TWlcOCngQZ2zO6/n8DmZMzP1555xEGtfX3xVyXo8CHgAAAAAAehEKeAAAAAAAuajUqqPLxdKNurlbxLDNPbfRito+q6rzX0+eIfqZQTmvN6HHmLgOLD5dg3zWyYLPuv25YMSnA1Per8kJcl4PAAAAAABEoIAHAAAAAJCna110Ac8ciqKi2mhAuViaRYcVI+ag+w58DM55vck8xnwec79PAc8kHmOy4HN9X2WeRe/1tceYiTPP4sfaVewFAAAAAAB6QAEPAAAAACBP9ys+VAyJGGPbaDUs4JEtFAMa3GdbDF3bXGroZ6bOeb3pPMZ8EnP/Fymtk4Wor+kuPvn3VZ96jMn7ufMpugIAAAAAADmhgAcAAAAAkJtKrTq2XCzdoJt7RQzbTGMOithGK2r7rGE6773mM0Q/knexxIweY96OuX9ESutkYSaPMR9mnkXv5fN9afrMs/gxn6IrAAAAAACQEwp4AAAAAAB5sw45UQU8c7gG22iVi6W5dFgm4ly2z4KvqfV6mqxSq+a1rdM8HmPeiLn/XY855vUYk4X5PMb45N9XWQHP9y562yp7TU6t16RPt540zJzTOgAAAAAAwAMFPAAAAACAvD3ggg+zozqFbOZ63kbLts8qNDjHPhy/sbXU0I/Y68iKXR7Pab0FPMY8F3N/XIGPWchjTBZ81n0z6yR6q0qtOq5cLL2sm4vGDLXXycM5pGTmz2kdAAAAAADggQIeAAAAAECuwg+yr9fN30QMs220Du5hG60tI84ZqvGftZ4h+pElXA4FPHotW9eVxWOGjVU8EzPmSY/lFtR6U+hr4Quv5FKg9SZ28ddnXsg6l17uaRdfwFNy+RXwLJLTOgAAAAAAwAMFPAAAAACAdrBttKIKeOZULKV4rOsvysWSbdGzRMQ5bJ+FpJZX/D2HdWxLuKitk8wzcdt56f639XVg2ytNHTFsAsXPFbcnS7El9jgOjBkzRvF8Drn0Zo8oto0Zs5Li9KwT0etoWufXFQoAAAAAAOSEAh4AAAAAQDtYh4l3FLNEjLFttB7r9ufNI8Z+rbgthbzQv6xZLpYKPXR6StsGHmPu85zrQcWGMWM2dvkW8GziMeZpPc7fZp5J7zbcY4y9JifSY/Vdxrms5hpvRwgAAAAAANqAAh4AAAAAQO7CbbSu0839I4Ztqji025+jCnhuoTgATZhNsYyiltUCep0PcEExWpyhnlPe6TwKeLTub/L4mgi3B9vUY6hP8UqfpufjWT1e/9HN2SOGTapYT3F9xun4vCYBAAAAAECOKOABAAAAALSLbaMVVcAzb7lYWqxSqz4dbp+1eMTYq9NNDf3I7i7DAh5ZRzFXzJiPFPd7zudT6DOVYkfFOZ5ztsK2hBriMe6OrBPpEDcoDogZs6/LsIBH30+nd/FFYAAAAAAAIGcU8AAAAAAA2uXfijcVc0SMsa15nnbR3SI+cUFXEqAZ25aLpaMrteqItCe27bl0OMxj6DVaf4zPnBr3uua1r51lY4YeonGXaPw3PvM2Q/MP1uFwj6EfKIZllUeHuczFF/D8XI/tqnrufIu6krICoQkzmhsAAAAAADSJAh4AAAAAQFtUatV6uI3W7yOGbaw4xkVv0XOD5hqdZm7oVyZSnKDYIYO5t1as4DHuvITzXuDiC3hmVRylODjh3ElYcVJcdyFzmW+BUl+nx+FJfd97WDeXjxl6usYVNX5UmutrTtu+K6rzGQAAAAAAaBMKeAAAAAAA7WTbaEUV8CxWLpZW03GpiDFXpZsS+qHt9Tq7qVKr3pzWhJpvDh3O8hg6VOs+l3D6KxXHKWaIGXeg8rhf8/tsu5WI5l3d+XUXsgKUM9Jev8OdorgxZsxiipNcisU2es4m0OESFxStAQAAAACAXoYCHgAAAABA21Rq1UfLxdJrujl3xLBzI+57V/FAulmhH7Ktri7Wa3FlvSafanUyzTO1DrcppooZWlf8Men8yvE7rXGibp4eM3SA4hqNXUPn1JKu04jmW1KH6xUTeAw/X2u/k9bafYQVij2hWDJm3G/1WL+sxy/qe2ASVki1ckpzAQAAAACAlFHAAwAAAABoN+vCc2jE/fNF3HdNpVYdl3I+6J+mUAwtF0vr2jZHzU6i860rzh2KRTyGX6u1HmlyKSvq2EOxYMy4yRV3Ka/NtdY9Ta71X5pnJRd0j5nSY/jHij+0umZfE24faJ11hnkMP0tjf6Zzzmx2PZ1vhVynKfZpdg4AAAAAAJA9CngAAAAAAO0WV8AThe2zkCYrvnmgXCztValVr0h6cljccpliNo/hnykOSLpGF+U3Suvt7oIikLhOOFZs80+NP17HP9m5SdcLt1+y7e6sIGeQ52l7a62Pk67VH+hxGa7H9P90c6eYoVZ881eNXVjHA3Tet0nW0XnT6nCRYsPmMgUAAAAAAHmhgAcAAAAA0FbW7aRcLL2km/MnPPUV24Iri5zQr02muFyvya11PFKvsSfiTtDYOW2sYgcXFFz4sOKWEc2n+cPXzoNa+1jdPMZjuP0O6CjFNuE51v1nZNxJGjtQh40VRysWSpDeeZr/ugTj+yPrwmNbWs3lMda6La2j5+MwHa/TYzs6arDGTaLDLoojFNO1migAAAAAAMgeBTwAAAAAgN7AuvAcmfAcuu8gS+tZlIslKxK7XVFTvKGwDigTKWZWLKZYV7Gai++C091fKrXq1SnlacU4iyo29Rw/j+ISy0HXNlTH4QoroPtI8Y0Lrs0KPhZQrKhYRzEkYU53K/ZLeE6/o9fAF3oONtHNBxWTepwyu8I6Q52s827W8V+Kl13QzamgmMYFW6rZ63EjF2wLF+Ut59ctCgAAAAAA5IACHgAAAABAb3CNo4AH+bPtnaaNGbNMGGm5UnFgWpNVatVx5WJpO92cULF+glOnVmwTRpqGKTZpZpuu/kiP01N6/jbTzVud/9ZkMyn2DqNZj7ngtXhqC3MAAAAAAIAUUcADAAAAAGi7Sq36XLlYek43F/Y85Qmd82KWOaFfuMEFW17tltN6Fyt2taKbNCe1rbDCTi42f9oFOUlYUd0uyue7NubQcfR43annzzrmXK+YOIclP1BY0VCSgi8AAAAAAJAxCngAAAAAAL2FbaP1B8+xaW0/BOylsIKaPTJcY6ziKMUJlVq1nsUCmnd02InHOqucqBiYxToNjFQcrDgzq+vr6/S4/VPP30q6eZNi1gyX+kSxrtZ7U+tluAwAAAAAAEiKAh4AAAAAQG9h22j5FPBYgQAFPEhFpVa14po9y8XSKzqe4NIvfHlZsZPWeTjleX8iLJ45TdfykI4XKBbNek25T7EPHbFap8fwMT13S+rm3xSbZrDEa4oNtM4LGcwNAAAAAABaRAEPAAAAAKBXqNSqL5WLpad0c/GYoQ9p7Ft55IT+Q6+pU/X6e0A3z1MslcKUHytOUvxVc49KYT5vWu/fuha7Btsa7FCXTUeXquJYxT/oupMePZbWIWczPX/r6XiyYsEUprXn5zLFfpr/8xTmAwAAAAAAGaCABwAAAADQm9g2WnEFPFflkQj6n0qtWisXS7av0E4u2BJqniamsY47VgR0geb7Os38ktDaY3Q4V9dzkQu6uWyjWEsxqIVpv1LcoLhI8z/YepZoRI/vP/TcDdXNzRX7KpZrYhrbGs7mOE7zPZJmfgAAAAAAIH0U8AAAAABAhiq16iU6XNLuPJJS3m/qUGjDusfrcHwb1k2j40qS9TryddEfhFtqXVgulv6u40qKjV1QPLGQYpIeTvlQ8aRiuOKfOv+JvHL1EXb/saK3q3RNU+m4qmIFRVExt2JG1/PXunVteVfxvAu67Vh3ogc03/c55Z3H9l9xOZyhwxltXN9ei7Zd4NV67qyYbAPFKoolXNBVqafn7X3FY4q7FTdFdSvTfWfpcFbKaQMAAAAAgCZRwAMAAAAAADCeSq1q3UuGheHKxdIAHaZRTKEYrBip+EDjvmpTiokp1890uDGMH+i67FqmVkzqguuygh/rHPRh3lt/oTE9F6/q8Jcw7HmbUIeZ3P+Kyr51wevxm/ZkCAAAAAAAWkUBDwAAAAAAQIywoOejMPoMXZcVIo1odx5IJuyE9Ea78wAAAAAAAOmhgAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAAAAAAAAAABoIwp4AAAAAAAAAAAAAAAAgDaigAcAAAAAAPRF4xQjY8aMziMRAAAAAAAAIA4FPAAAAAAAoM+p1KrDdZio3XkAAAAAAAAAPijgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAHI4szAAAIABJREFUAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAAAAAAAAAACgjSjgAQAAAAAAAAAAAAAAANqIAh4AAAAAAACgReViaQIdpmtwd71Sq36QZz4AAAAAAKCzUMADAAAAAOj3ysXSIB0mVUyo+E7xVaVWHdverNKhayvoMJli4vCvvnXB9dXblxXQJ62muKvBfc8oFssxFwAAAAAA0GEo4AEAAAAA9CvlYmk+HVZRrKhYWDG3Yorxho3RuBE6vqh4WnG/YlilVv02x1QTCwuRVgpjKcX8illdUJjU3WiNfdsF11dTPKB4UNc3Ksd0gb5mnYj77ow6UV+PZ+tQipn/RX2Nbp84KwAAAAAA0BEo4AEAAAAA9HnlYsk60OyisA+/l/I4xd4vzxbGWooDFd9onlt1PF8xvDd1sFFedk17KLZSTO5xykDFXGH8Ivy7zzXP9Tqep2t7LJNEgb5t7Yj7hsacO69imZgxA5KlAwAAAAAAOgkFPAAAAACAPqtcLA12QfHN/oqpW5xuEsXWYTymuY+s1Kr/bHHOliiHhXQ4QbGBotDidFMqdrXQvPfoeISu798tzgn0C/qasU5XCze4+xvFgzmmAwAAAAAAOhAFPAAAAACAPqlcLK3qgm4582Qw/dKKO7TGbTr+ulKrvpXBGg1pXXs/f6TiEMWgDJZYQ7G61rlUxwN0fZ9msAbQl0R137lfX0Pf55YJAAAAAADoSBTwAAAAAAD6lHKxZNvMHKY4RjFBxstZ55ufa83dK7XqdRmv9QOtNUSHaxSrZLyUdfTZQbGa1txS1/dIxusBnWydiPvuzC0LAAAAAADQsSjgAQAAAAD0GeViaaAOFyu2yXFZ23rqGq29pI6HV2rVelYLaY3ZdLhbMV9Wa/TAtga6T2tvq2u7Mcd1gY4QdsRaPWLI0LxyAQAAAAAAnYsCHgAAAABAnxAW79zggq44ebNuNYcqplYee1dq1XFpL6B5p9fhfsVcac/tYbALipQ20bXd1ob1gd6s7IJCvp68qq+ZV/NMBgAAAAAAdCYKeAAAAAAAfcV5LnnxjhXa2NZQ9yieVbyv+E4xiWIOxTIu2BpnXs/59lB8qzggYR6RysXSIB1uccmKdywPu65/KV5UfKwYrZhUYZ18lnDBtS3kOZ/9DuEq5VKu1KrPJsgD6OvWjriP7bMAAAAAAIAXCngAAAAAAB2vXCztr8POCU4Zpfib4vRKrfp6gzEPKC7V3NZdZyXF0YpVPebeX+e8rHnPS5BPnBMVy3qO/VxxvOJvyuHLiHGXKX6nXG3eY1xQzBPHCpusE89Smvt7z3yAvi7qa4cCHgAAAAAA4IUCHgAAAABARysXS4vpcEKCUx5VbF+pVV/0GaxxdR2GK1bTWtvreLZispjT/qKxj+jcpxLk1SPreKPDbz2HD1XspHXf951fY/+tw7rhtVnR0cQxp1jHnoMVf/RdA+ir9HUznQ5LNbjbCgXvzzEdAAAAAADQwSjgAQAAAAB0rLA7zkWKCT1Psa4zuzXbPUbnXaY1n9TNfypmjhg6WPF/1t1G54xuZi0TXt+ZioLH8AsVe2q9sc2sFV7bK7p5l4svUDpIY63DzwfNrAX0IWsqBjS470F9jXydZzIAAAAAAKBzUcADAAAAAOhkWyuW8RxrW2btFXbUaZrOf6ZcLK3mgi22po8YuqRiH8XpLSy3vvO7vtsUeyi3cS2sZddW0bVtFc7XqCjB2FZa+yoOb2U9oA+I2j5raG5ZAAAAAACAjkcBDwAAAACgI5WLJSswOcZz+O2KvVst3umieV7W+pvp5n2KgRFDj9C4izX+8yaX+r3HGNsua8dWi3e6aJ47rLuObu4VM3QXjTta48eksS7QacIOWWtFDLkzr1wAAAAAAEDno4AHAAAAANCp1lbM6zHubcV2aRW4dNF8D5aLpT+76C4007igC8+fks6vuefXYUWPoYcol0+Tzh/jGMWOiokixlj3oZUV96a8NtAprMtWoy5cIxTP5JgLAAAAAADocBTwAAAAAAA61W6e46zzzhcZ5WCFOTsrZowYs2+5WDpZOYxKOPe2ikLMmNcVlyecN5Zy/VA53+yCLcqirOEo4EH/tXbEfXem1fELAAAAAAD0DxTwAAAAAAA6TrlYss4wUVvXdHmgUqvenlUemvs75XKKbp4aMWyIYkPF9QmnX99jzAXKYWzCeX3d4eILeIoZrQ10gnUi7huaWxYAAAAAAKBPoIAHAAAAANCJVlNM4jHu5KwTkUsUxysmjBiznUtQwFMulqzoZwmPodf4ztmEJzzG+GxhBvQ5+hqdXIflGtxtRXX35JgOAAAAAADoAyjgAQAAAAB0okYfnHc3QvHPrBOp1KqflIulB3RzzYhha1rXIOvY4zlt2cVvn/Wi5nvDc75mjPAYMyTD9YHebHXFwAb31fS1+WmeyQAAAAAAgM5HAQ8AAAAApKxcLNmHutMppnJBV5ZxCivc+IgPdVPjs3XT7RluLzU+67YRVcAzsWIlxZ2e832puFaxmAu63EzQw5h/JUmwCd97jInqOtTn6WvdntcZFZMpBrjgMbOv8Q/02huX8drWAWYGF7y2zHfhup9nuW4alLsVp02jmFYx2AXfI79WfKL8v2hnbgmsHXEf22cBAAAAAIDEKOABAAAAgBaViyUrsljHBV1hFlHM6XouuLCx9iH7S4qnFcMVd1dq1bdzSrUvWcBjzP2ZZ/E/j3mMWdF5FvDoNTFMBwt7zUykw8IuKOZZtNvxySbyTGJSjzE+RT69gh5H+x1I1O9BxuhxHxMzhxWcbKxYS7GMYjYXFO6Mb6TGvqjjQ4rbFffEzR1H882iwyYuKBSzArbpG4yzApinwrVvU1S0dr2VtVsVFjrZY2Zda5ZVLOgavL401jo/Wf73KW5U7q/HzD3I9fwcdBmdUSHfOhH3+RbqAQAAAAAA/BcFPAAAAADQhPDD9N0V2yjmTnCqFWMsEcavFHXNZZ1Uzldc0+qH/P1BWIgxk8dQn6KatLzoMWb5ZiYOt916NIz/0uPQY5FYimbzGPNBxjmk6VDFHyPuP0xxQk93hEV6dv6mrvG2Sd1ZV5mur/N9FO9qjpN1PEfP5+gkSeu8ZcPc1nfRhSpdpnBBt6eVwpyf1xx/1vGyrLsCjU/rWuHZvi74PulTEGZmCmNdxZ81xzAdT1TudzUY/7Bi6Yj5tlZc7bm2F+VkBYSzN7j7E0UtzfUAAAAAAED/QAEPAAAAACRQLpasWOdIF3wg7fNBfhzbSqbrw/ZjNf9BlVr1+hbyW0iHDVPIq13O0vV/HTPGtg2Kez9rHTfeSCclL++Ha0YV1Sye5oI5bA+2pMcYn8KljqWvpyl1sOKXXZxf8UwjMytOV+yuObfXc/e4x9pDwnO2csH3iWbZ94SLFb8O1878OdM6VoBjj5sVz7TyuNl1r2qhOa2AZ2/l/1oKKbYqqvvOPTlu3QcAAAAAAPoQCngAAAAAwEO5WLKOGla4c6BiUEbL2NZb12kt23Jnp0qt+nETc1iRSI9dRDrEJYq4Ah6fTh4f5NnNyD6w1/NmeU8RMWwajZlRY9/LK68Wrecx5pHMs2gTPVe2JZ51bvHpROTLimke1Nzb6nVwU8TattXUFa7BNllNsi2/HtXcm2rtzLZ40vzWWexMxeQpT21bcD2h+fdS/lekPHdSa0fcNzS3LAAAAAAAQJ9CAQ8AAAAAxCgXS/PrcI1LuYNKBNsq5zGtu16lVn02pzU7yUQeY77KPIuf+t5jzHyKXl/Ao9eebQ/kU8Bze9a5tIOuf0sXFJNNmMH09vq9Rmts0FMhjf5+Vx3Oddn8zmYSxa1aY22tPSzNiTWndSSzwp090px3PJMpLtda8yr/YzJcpyGtbc/fyg3urisyK45C/1AoFOzrdM7x/npcGFEajRkXEWPGu/1D1Ov1XLfbAwAAAAAEKOABAAAAgAjlYsk+qLVOGVPlvLR1/fiX1l+tUqs+kfPavV3UNlVdRmWexU/5vMeeQzE84zzSYNsfxV3PM3ptPpZHMnnS15xtj3ep83udNcuKXa7WWovrMXyr29p763CWa23LrDjWQex6rbVoWt2gNJcVOtnWf+unMZ+Ho7XmJMr/9zmt151td9ioiPDpDuqwhd6rqLi/nQkUCoUfFfR0C/u3dWR47Om2FbJ+p/g2jJHj/bkrvuwWn4fHrykcAgAAANDfUcADAAAAZKRQKNiHvxY/84gBHtFdT3/Xk/HHjarX6w80d0X9T1i8c4di4jalMKXiTuWxbKVWfaNNOfRG33qM8enSkzaf18nsmWfRIr3e9tRhC4+hJ2edS9507Vac8X8u2+KdLvb1bcU6G4Zrb+aCDjZZFu90mUZxhvN7niMpb/s35iqXX/FOlwO19oic1zTrRNxH9x30FfZ1Pchlt2VoT8bpZ2fbitKKeb5QfKL4NAzbUvSzbre7jiP0c+2nOeYIAAAAAJmigAcAAAD9TqFQsA8lJo8J+yB+ovA4ODx2D7vPOg50fbgxuNvtruiNP29/oJih3Ul0gnDbrJtdsuKdsYphirsV1jXnTRf8z3L7H+XWwWdexQqKzcPbPqZTXKd8VqjUqj5bNPUHPgU8U2eeRTd6fuz5HewxdPqsc2lFWLxzlsdQ67xzZcbp5G2I4loX/4G1vf4qCtvezr6n2te9/bsxt2J5xawJ1txAj7mdY1u+XeziCzPfCNe2o33IPTDMewnFci7Zvzubae0lU+jwdbxi4wTjbZuph1yw/Zq9jl5zwbXYv6kzKhZVrOaCwqYpYuY6RfFNwnxbtXbEfUNzywLoe7r/fD6L70n6ud66/Lwfxogw7HuzdcP6j8K6nL1Vr9dHpp0wAAAAAKStN36gAAAAAHgLu9zYB+IzhUfrKjCtC4olpg5vT90t7O8nc37da9BPlYslK9C60QUdMnzYB/pW9HBGpVZt1BHC/qf4K4o7NP8ROm6gOFUxj8f8SysOVRzjmU9fZx/SWRFAVKeSqfU4T67n48uccprDc9x0WSbRLD1W9v3zdMVWHsOtkGxnPbZjs80qd3u5oIikkUdd0LXmJl17j0UjehztNbmq4gRFyXPdg11Q0DdJg/utI8XfFBdp3RcaTaK17d87K8CybaUm91jXcv21YhfPPHtac10dDkpwihVFHqXreKbB/fb904p6LrYtsnTcXXG4C/5t74n9Wz5ZgvVbopysg9aCDe625+mhvHIB8F9WPDuHi/53uK73DFbU82a3sOKe1xUvu6DAh+27AAAAALQdBTwAAADotQqFgnU+mc3975fyM7uge8xMYdht+zA8j61O0L8cq1jIc+yDih0qterrvpNrrBWf3FoulqxTz7l2vsdph2j8JWyl9cPjN1KPxYcuvpvNkorhOaRkFvccN22mWSSkx9G+j+6j2Nf5FX3Ya3c3PQdPZ5pYezQq3rEPffdTXBt+7TYU3n9f2FXnHBcUoMTZMOI+61Kzp+Z9N24SjbEiweO0tnVGsgJEn9ekdeHZu5nuXjrPCmessMhnyy/b+mZXrXOj7/xhkdRftM4VOl7goh+nvER137lPOY/KLRMASdj3qRnCKPdw/7d632GFPC8qXgqPFi/X63Wfrn8AAAAAkAoKeAAAANA2BXFBUc4CivkUc7r/FetY4Y4V5/h8MAikplwsWXeFfT2HX6TYq1Krjm5mLZ33ndbbSTe/8FjTigusE8WuMeM+dUGnkE7l+1jaB21xBTwru/wKeFbyHJdbt5CehB1i7HvtKopfKtZx8VtGdbHuBPvqdXtZNtn1Sra91PoRnbV6ZN2J9FhbR585FGs1ufaRij/FFQ31sPbrWnt13XzYBf+2RrGiLdt6a1gT+VlXMJ/twqzLxbpR3YOi6LwPdT0buaCr0cHNzJGiqAKeO3PLAkDa7D8NLBFGd2P1dsW6Jz7ugn8PfjjW6/XPcs4PAAAAQD9BAQ8AAAAyVygU7MPh+cNYoNvRYtI2pgb05A+KgR7jrCPEHkk/XB+fnV8ulvZ3wQft68QM305jD9U5H0XMZx8i94cPkmuKn8eM2Vjxx6wT0XNiXcDinrsuuX3PU162beBNLtjax7YYGaKwLYCaKSL6SrGTXl83pJdhr2cFJ6vrmpv6oFbnjbPuNi7o4pD09y9H6Pw/NbNuuPYnWts6e1kRT1whrH0dDUsyf9i5aT+Pobbd3RrK59Uk848v/D5rXcisiOzQVuZqlta2fxdWjxjSH77vAv2N/fve9Z5lm/DvbDsu64bYVdRTVfy7Xq9/1Z4UAQAAAPQlFPAAAAAgVeG2V/a/V5dywfYddlzE+Xd4ANqmXCzNq8OmHkMfUOzdavFOl/CDfuusYwUDUcUV1oVne8Vpaazb4R7xGLOEHteyHt9KxrlYV44ZPcdOnGUi45nL+XcGivIvxS56HF9JYa5OYVtKbdFs8U4Xnf+aXoO3OL/vK11ua6V4p9vaFa19n4suOjGLNjG9dQyLey2PVWzVavHOeKwLmRU7Jnk802Lb7kzR4L5X7LnOMxkAbWNFkXOFsVn4d9ap5xkd7ecN6/w3vF6vv9em/AAAAAB0MAp4AAAA0LRCoWD/G92KdJZXFF1QrGPddSZoZ15AC/ZQDIgZ863iV5VadUyaC2u+d8vF0l9086iYoZs4CnjM3YpRLr440B7PX2Scy+8TjM3zffgcLZ5vhRdHK65Kq1itg5yua342pbmudf4FJ1Y4tE9K65qbXXwBz7xJJtT3KSsk3M1j6Gl6DFPdwi7sWLaLC37u8C2aS0tUl62huWWB/sA6zCUprBvgfvqzS/e/GzBe9PR3Fj+LiUHdwrq6Dex2u/vfTxwT9j2kr22Ra+99urbg2tP+Qu+TbKvPYS74eeVett0CAAAA4IMCHgAAAHgrFAq29cuKipXD49KKidqaFJCScBuk7TyG2ofS/8kojTMVB7vgw61GllOu09gWORnl0BF0/V+E3UXitq5aV+M21Phbs8jD5tZhlQSn5Pk+fM4Wz7cOKssq3tJ1PtSPinhGKk5Jcb5hCcZeqsf57RTX/rfHmBkSzvlLxbQxYz5QHJtwXi/h1/4hunlJFvNHWDviPrbPQmrq9fo3OqRVQNjr6P2E/Ts4eURYJ8Kpu8W0YXT9Oc9Odq2YL4zdXdChxwqz/qm4XfGEnuf+8m8qAAAAgAQo4AEAAEBDYYed5RRrKtZQLOP69s+Q9ot0+9DkSxd0WWkUI7sdR4fHUeOF/Z11UrAPwMfExLiIcBG3XcTfNeI7rj+ywrTpY8bY83pmVglUatWPy8XSbe5/WzL0xP6XvHWfuC2rPDrIBS6+gOeHcXpcn0i5MMKKd+z1cm7C0/LsUDZHi+fPH4Ztl/SirteKWi7W4zi21cR6uVvsazGtyTTXh3rsbCsVn44xF6e1bugljzHTJJxzK48xZ+u6v0o4bxJXKo5xrRepeQm/1pdscLf9Wz8sjzyAvqBer9vPvp+GkVi4Xa9937LvqTO5oAjRYvrwOFN4n0Vved9i//aXw/iD4m1dh/0cd5NiWPiYAAAAAECveRMDAACAXqJQKNgvvzdQrK9Y1QX/E7aT2AfL1qLePhT4OIyuDwk+Cf9sBTqfh8fu8VW9Xu/rH0yjMZ9tlm62D+MzzsM+zBm/gOd9xcthvOKCrY3gnHXVeUsxW8y4IYp/lIulVdPqXKS57APEG1zwQWESeRbRzZHiXAsoLlTsZ1sY6XGspTh3b3NLBnO+4eILeOy1WUlzUT1PX+r5ssLUSSKGDbQOZD6FWRpnXffiiuZsngsSpJmYbWGoXKx47s9ZrtONFTI32l7xX8rnm5zyAPo9/azeVVAfWZQbdvqZxQX/FlrYzwqzdvvz7C7YBqwdLI+9w/hEudq/O7bd4j28FwEAAAD6Nwp4AAAAYL/gtvbum7hgW4ySa/whVTtZVxv7Rf27ihEuKGj4IDy+H/6dxaf1ep0uM2jGGh5jbsg8C+fuUhztuhXsZNzJomOFH+Lb/2S/yGP4oorhGr9eq1ugaY6pXFBotUITp+f5wVyj7iTWbazQ5Jz2OD6sx+B3ehz/2uQcvd3wDOb8yGPMg3pMs/j3ywpXowp4jH2I7fPa/LmL3zrzAV3H+z6JtegaxUmu+ddyElFFS2yfBfRCYVebN8P4ibDT6NwuKFC1mL/b7SlzSTJg3YR2DuM95XWVjpcr/ydyzAEAAABAL0EBDwAAQD9VKBTsF9bbuKDTx2JtTsfYL9nfCMM6atgH7G92ixEU5iAr5WJpMh0WiRlmr7+7s84l3Lrnj1mv04dcotjP+X0fW1jxmJ7vPfU4X9/MYjrXthW8VDFPM+e74Htd5pSnFTXY1j5W3PSo4mnF6y7o8mI5WAch6wBgj8lKLijgnN1zevtdwhlaY2Y9jgennHq7va9rGpHBvN96jHkmg3V91/a1kseYu1JcryE9T2/pNWiPWaY/w2gNK2peM2LI0CzXB5ANva+wbXBfDONH9D7JtuKynwuXcMH2eUsp5nXZb4NpndoOsFAOVsBjne+uUK5fZLwuAAAAgF6CAh4AAIB+pFAoWNeILRXbK+xD6Dz+1/r4rJPISy74ZXnX0eKVer3+fRvyAYx9QBP3ocyzlVqVD1B6Gdv2p1ws7eiCrYcGeZxi/9P9Op1zv45/UtynOepxJ2m8fZBnxSpW+NioS9mzCvvQb9qIqUZ65Niy8JqWjBhiW/50ff+9Qde3vwu2T7TiMd+CiIN03mda68SWku1dXspoXp/CrdczWntUinMt6zHmwRTXi/OAy74I2T64H9Lgvnf0+n824/UB5EzvSbo6fN7T9Xd6H2WdzBZ3wfcEO1rXUvvZIKvOpfZv+NmKk7W2dRz7q/J6MqO1AAAAAPQSFPAAAAD0cQVxwZYXu7mg287gnJa2D4+ti479otn+B+njiqcU79QlpxwAXwt7jOFDk16qUqs+US6WDtfNkxOctmoY1sXDOmg8pnhN8ZkLthKyrkxzuKC4a/XwGOU7FxRH2tZaUQU83yTIMTfh1k236LG4XccDFce6YFulOH/SOTWdf2+mCebnnTaundW2U2l2fVo05n779z2rTkI9yWOLmbUj7mP7LKCf0NsX+/f74TB+oLdZk7ugkGd5F7zfsuPEKS9t8+1kofWsaNG2r7xZ+eS5JScAAACAnFDAAwAA0EeFv1DeUbG3Yv4clnzTBR0w7ENwK9Z5ol6vf5bDukAa5vUYk1VnDqSgUqueUi6WFtTNnROeOpti9xaXt6KFXZXDk8ohrpNTryzg6WIdjXQ4Sddh38dvVEwac4p1Hvi7PfY6N82tmtrlgzau/VVG86ZSNKvn2Lr4TR8z7L2cO5W9kMMa60TcRwEP0I/pvc6XLujS80OnHr3/sk6AVtBjBcJrKcou3d+/rxTGy1rrJB0vC7cCAwAAANBHUMADAADQxxQKhbl0+I0LPsSePKNlrFPD04phLtgq45F6vT4io7WAPMziMebNrJNAy/Z0QeeczXNc04oj9q/UqleGf54wZnxHbMOm67m7XCz9UjfvcPHXZEVQv3NB155O92Eb185le7UWzOYxJu+fBd7KcnJ9DUzhgg/ge2Kdje5pcB+Afkjvh2zLwgfDODb8DxWrKdZVrK+YKaWl5lNcpDhGa9g2lheGawMAAADocBTwAAAA9BGFQmERHQ5WbOWy+TnvVcVdLviwani9Xv80gzWAdpnBY8xHmWeBllRq1dHlYmlr3bT/Eb9LDkva/3rfS+te1O3vJoo55+MM80mVrus+PZ776+Y5HsP31dhT+0AXnnbmP66Na/uY0WNM3h2MrODKiugKGc2/hmv8M1VVr3c6DQJoKOzQc7NFuK3x0ooNXbCt8YIpLDGr4mzF7zW9FdFeqjXT3DYRAAAAQM4o4AEAAOhwhUJhUR2OUWzkgq1M0mKdAO5T3K4YWq/X30hxbqC3mcpjzCeZZ5GCcrFk2zYc1u48WrBVpVZt+rEOt4DaVY/DkzqeqhiUWmY/9o5iG633r66/0JrWqWaymPM64nXURdd3rq7LPmhcLWbotIqNFVdkn1Wmvm93Ar2Yz/fJrzPPopuwaM+2pYvb6q1Za0fcNzSjNQH0QXovZcWGj4ZxlN7DLeSCjoHbuKCjTivmcEFHHivk+b2Wur3F+QAAAAC0CQU8AAAAHapQKNgveo92QcedtAp3PlfcqrhRcU+9Xv8mpXmB3s7nw9/evr1NF+smtEa7k2hBKgU3lVr1rHKxZMU15ytKacwZsg/gfviQTGt8Pt5903uc/36KueTlQMXjHuO2cBTw9GUTe4xpx+Nna7ajgOfOjNYE0A/ofdbzOvzBQu/r7OeUbcOYpoVpF1Dcpvnu1/F3WuOJ1jMFAAAAkCcKeAAAADpMoVCwLgdWuLOnS+fnOfvf8jcprnZB0c6oFOYEOs1AjzF8sN9hKrXqU+ViaXnd3FJxuGKhFqaz7Y3sf7T/QfM2KmaZyWOet1vIoS10vU/ocRymm6vEDF1F436m8Z28fcfYdifQi/l8n6xnnsVPZfJ602vZvl/M1uBu2wrv0SzWBdD/6P1XVYeq3ufZdsibuGAbUOuo2Oz2gHZuTfPZ9lpHaf4v0skUAAAAQNYo4AEAAOgQhULBulL8RnGEYsoWp7MPou9VXKq4iU47gNcHJM1+iII2CrfUurJcLF2l488V2ynWVcziOcULLuhKdrHmejVm7Pwe873luW5vc62LL+CZ3AXbgDyfeTZoh9EeYyZ2yVnEAAAgAElEQVTMPIufymqbvKjuO3fr+8G4jNYF0E/pPZl1e7zSQu/9FtRxX8WvnF8HtPFNEJ6/peaybjyd3iEPAAAA6Bco4AEAAOgAhUJhdR3OVCzY4lQfKP5PcUG9Xn+95cSAvsNne6ysPiRGDiq1qnUGeSAM664xjw6LKeZWWGcz24LHtiO0rmQjFC8rHtN5Sba88ingeS3BfL3J/Z7jrGsJBTx903ceYwZnnsVPZVU0tE7EfUMzWhMAfqD3alZAvJfeB1oHwd0Vv3V+W3WOz865XPPY9lx7at5OLSQGAAAA+gUKeAAAAHqxQqEwow6nK7Zocaqa4q+Ka9kiC+iRTwFPOz6YRkbCbjpxHXWSWjzm/s+17nspr5kXK2iyr5O4r4OZc8gF7fG1x5hpMs+im3KxZK/HZjpTxM1rc67U4G4rBrwr7TUBoCd67/apDifqfeEZLtha60DF7E1MZd0Hn9E8B+l4vuZtx5aHAAAAAGJQwAMAANBLFQqFHXU4TTFVk1PY1g63Kv5cr9cfSSsvoI/qdR9Mo7OUiyXbYm3ZmGEv5JFLFmy7IF3jO7o5T8zQqfPIB23xrseY6TLPIp/1VnaNi9WeTNiZCwBapvdz1gXtLL1HPF/HXRXWmWemhNPYVpfnKTbQPLtqTr6XAQAAAL0MBTwAAAC9TKFQmEWHCxVrNznFWMXVihPr9fqzqSUG9G0+XVHy/mAanWU+F1/k9VgeiWToK48xWW1nhPbzKeCZvVwsDbCCr8yzCcyW0bxRP4PdmdGaABAr7KZ6jt4z2rbIv1Ycppgy4TTruaAbjxXx3JJ2jgAAAACaRwEPAABAL1IoFLbU4RzXXAcDa4N+neKYer3esV0egDbxKeBpZruCdnhecWK7k2iBTzek3mh1jzG1VhcpF0sDXfBaHFmpVd9pdb6ECh5j2Kax7/pA8bmL/qB4IsWsiv/kkpFz82c07zoR9w3NaE0A8BZ25Dk5LOQ5UrGXYmCCKaZV3BRuzXUw2ywDAAAAvQMFPAAAAL1AoVCwdubnKrZpcoq7FQfV6/Un08sK6Fd8PmyeN/MsQmGRxphKrVpPeq7OeUqHp9LPCjF8uqY97DORnv+JdVjABdtVzaWYMzxaWMcRey9/gWL3pjJt3uQeYzq1AAsx7PuRXpv2vWXlmKFLuPwKeJZIe0Jd4xyucWGQdaHy+joGgDzo/d/HOuyn95O2NdZZitUSnG6Fub9VrKjzt9Bcb2SRIwAAAAB/FPAAAAC0WaFQWNoFW17N08Tpz7mgcOeOdLMC+p1nPMYsnnkW/3Og4vBysfSajq+H0f32m5Valf8p3UuEBTdxHXjsOXvVc8p1FdfHjFnRc65U6Bon0GEWj6HvZ50L2sq2gYsr4FlekdeWLCtkMGdU95379HU8OoM1AaAl1oFV7yvX0M2tFacppk9w+jKKR3X+tpqHLmMAAABAG1HAAwAA0EaFQmEfHU5VTJjwVPsf4Mco/lqv18eknRfQD/l0rFnMCjUqteq3mWfj3KKKSWzNMMY3VrksoVyezSGXjqHHxP4n+VQu2BbC4hM9Ri/lsPSGLni+otyVYD6fQp8Fdb2z6vreTjBvKxZUDPIY90rWiaCt7lEcEDPGCmAOzjoRvf5ncNkUVkZ10+KDbQC9lt4XWufGK/Ue075X2XvMHROcbls4/0PnHqXj8eFcAAAAAHJGAQ8AAEAbFAqFiXSwNue/auL06xT71+v1d9PNCui/KrXqu+Vi6R0X3WHE3j+tqvhHDiktH3P/WMXLOeTRq+k5O8cFW91Ysc6Q8Nj9fa51sdk8h1S28xhzQ4L57Lm1DktxBTMbKM5JMG8rVvEYY6/L5zPOA+31gGKkYnDEGCt2nFffV7Mu5tpEMUGaE4bbF0Z107ozzfUAIAt6n/ipDjvpPedVOl7k/DromQGK4xSL6NydNM/IrHIEAAAA0DMKeAAAAHJWKBTm0OFGxZIJTx2h2Kder9+cdk4AfmAdUnaOGbORy7iAxz741mH2mGFPsIXWD6wrzCoR969gXXn0WGX2v8g1/9wu2PIqyseK+33nVL7fad4ndbMUM3Qbl18BzxYeY+x1+UXmmaBt9Px+o9emfQ/cNGbo7orfZ5VH2G1rzwymtuLJyRrc95Ku/40M1gSATOh9411672mdHM9VbJng1K0Uc+ncjTTHe9lkBwAAAKAnFPAAAADkqFAorOCC4p0hCU+92AVddz5PPSkAXXwKeLYoF0sHVGrVrzLMI+6DcXNPhut3kmdcdAHPjIolFE9kmINtJzQgZswles2MTjivFfzEFfBYgdKimvuZhHMnYtu16bCix9Ak24Shc13u4r9P7arXzYl6bX6SUQ7ru2CrwbStE3Ef3XcAdBy9f/xMh630PvR2FxTyTOp5qv0M8ojOW1dzvJBZggAAAAB+hAIeAACAnBQKBdti5ULFhAlOsw++dq/X6zdmkxWAbu5QfKuYOGLM5C4o8jkjiwTKxZJtB7OLx9A8tvHqBA8qfhMzxv4XeSYFPGG3pN1iho1T/K2J6e37/sEe4w5U7NDE/Ekcqyh4jLs84zzQO9j3n7cVs0aMmVLxR8U+aS+urzvbvuvUtOcNrR1x39CM1gSAzOn95OV6P1rVzWtcUNzswzpCPqjzNtT5D2WXHQAAAIAuFPAAAADkoFAoHOGCD7J8PgDtcp9i+3q9PiKbrAB0Z111ysXSdS6+GOIIjbOOKll0xLJtiuaJGfO6opLB2p1ouGKsYoKIMTvp+TrGtqVKc+FwCx/bvmpgzNAbtPYrTSxRU7ysmC9m3LbK5ZSsuvBo7s1c0O0kzkPKgf+h3w9YNym9Lk7Tzb/EDN3LttvS+DtSTsHWnTflOe21PoNr/KH2SBd8vwGAjqX3lS/rfelyunmmYlfP06ZW3K3zttL5t2aXHQAAAABDAQ8AAECGCoWCfah8tmKPBKfZh9HHKY6t1+tjM0kMQCN/dfEFPNO6YAuCrdNcuFwsTabDiR5D/16pVetprt2p9Dh8oMfNuvCsHDFsOhd06flzysv/XrFGzJiu7+eJ2XOsazvLBa/JKPbvzPka+3OdM6aZtRoJOwyd7zm8qetEx7rABd2fZo4YY0VuV+h1tLpem4+nsahtYajDnmnM1YO1XONC6wd0Dd9mtC4A5EbvL60gcTe9T7VCYfsZw6c77ESKG3TOTtbJJ9MEAQAAgH6OAh4AAICMFAoF+2Xo1YqNEpz2kcL+d+N92WQFIIp9yFwulqxbxC9ihm6lcU9q/EkpLn+eYraYMV+7oHgI/3OZiy7gMUfp+bpRz9eraSyouTbX4QSPoRdrzadbWOrvikMVM8al5IICpQNaWOvHExZLs7hgy6CpPIb/S9fJ9kL9iJ7vb/QaOUw3L4kZaltp3a2xG+mcfzW7XtjxyroZ/qHZOTysE3HfnRmuCwC50/vN8/V+1br33aSY3uMU+xzhEp0zqc49L9vsAAAAgP6LAh4AAIAM2C82dbhZsXqC0x5TbFqv1/+TTVYAPB3sgk4Mce+XTigXS2MrteoprSwWfjB9qmIbj+Gna71PW1mvD7rSBZ2Lpo0YM4niZj3WK7X6+GkO23LCiqgGxAz9WHFYK2uFRRJHuaDbSZz9NdYKvI5utUOT5llQBytkm8Nj+CiXrMsc+g4rnrOvh5/HjPth+xW9rqwA5y96fSbqLqjzrIDNPizesKks/dawr+c1I4ZQoAagz9H7zkf0vnVZ3bStsRbzOMW+V56jcwbp3LgOgQAAAACaQAEPAABAygqFgv1v83+6oCOCr6sUO4ctzQG0UaVWfbZcLJ2mmwfFDLXCm5M1dlEd99V5XyRdS+dadxPbomgzj+HvOL8ttvoVPe7f6XG0TkgnxwxdWDFcYzduphNPuMWZvS529Tzl11rnw6Tr9MC68GyrWMVj7JGKeZXrXlr786QLhUUMu7jgOif1PO1wrfVC0rXQ+cJt3nbUzadc/OvFuhLa1+hOOud4HW/Q+ZE/84RdoGy7rH0Vk7WecaRlXOMiwLeV6/MZr+9rej0uh7Q7iW6sIOv7dicBoHn2n0f0/nVF3bxGsa7HKfbz7+m2VbTO/Uu22QEAAAD9DwU8AAAAKSoUCvZhvG2zUPQ8xbokHKM4ti5Z5QUgMet6soZiKY+xv1KsWS6WjtPx0kqt+nXcCRo7kQ47KI5WzOCxhn1/2Nk6sniM7Y/OckEXmHlixi2ieCJ8rs5O8Fzt6IJuOrN45vM3zX2N59hImmecctjJBV3apvY4ZSvFKjrnjy54Pca+ZjTWfjdg3U1su65lEqR3nQu6R6Gf0uvrdb1+9tbNSz1PWUhxueIsnXevjo8q3nDB9oATKKZRzO+Crj7Lhn+Xh7Uj7utN3Xdmdn7b9+XFOiNRwAN0OL0N/UrvY+3ngL8pdvY4xYp4TtM5Y3TumdlmBwAAAPQvFPAAAACkpFAo/LBFhPP7wN/YBx471uv1q7PLCkAzrKNAuVja1G4qpvc4xbZ4OVtxos6zDlwPKJ5TjFBYlwnrPjGdCz68tg+m13d+xRhdTlBOdycY369YJ4+wE8hwF/+Bv3UKsU5Gh+sc2zLCnqtnFR8oxrig04c9V9ZZyTqp/UIxRYJ0LIf9kuQfR9f3pnLdwgWFBD7v460o7BwXbPN2mwuu0brk2DXavz2DwzFWKLGcYj3FkIRp2XXu2Op2Xeh8eg1cpteZfW9L0hnGuhVuGkazvlQ8o1ghZtw4j7miCnju9M4IADqU3pOO0ftZ6zL4rgs6+vk4Q+d8qXMvyTA1AAAAoF+hgAcAACAFhUJhchd8wONbvGNbm2xcr9eHZZYUgJaERRNWvHGXC7pC+LDijy3CSMu1zv+DlH5Lz9dDer5s2zPfjjD2XG0bRlpqil9msaWM5rxX12fdnqzTie97eSs82i6MND2k2EA5fZvyvOhc1qHKiuN+ndN61llqA8XWLr6AZ2zUneFWhss2uNuK+u5JnB0AdKCwI+xRem/7qQu20yzEnGL3X6TxX+vUGzJPEAAAAOgHKOABAABoUaFQmFgH63Dgu+2IdeRYu16vP5tdVgDSUKlVHy8XS6u6oIjHZ6urtNk2TNvbNkptWLvj6HE6Tc+XbTFzQBuWv98FxTtfZbWA5r5K12cFBVbEMzirdWJcr/iVcvmuTeujFwo7Mf1Gr0/7Gce2qBuQ4XIfuqCArKr1tvEYH1nAI6u7xr8fq2idLxJlBwAdTu9TT7fOOrp5vovvbGj3X2lbcOk8OpYBAAAALaKABwAAoAWFQmGQCz7MXMnzlNcVa9br9dezywpAmiq16jPlYqnogq/1Rl0a0mYfhp+sOEzrx334jG70eP1Oz5d94H6Mi/+f42k5S/H/7N0JmFxVmTDgc2MREERQf4URFHVcEB11RtJGHXDQEQVEGRFQUZSBIFsgIPuiIpthCxBAUGRxQWVVRJnBUQFRY8cNUEccReAHFUVRFAhbznw31c5kMN11b3dV36ru9/X5nnPTde65J0lzzKn+6jv7xrMf6vWD4hkXxe/vtri8NOKpvX7ecsrf2/sj5ksoYzTxvVEe2/bduDwnYp0ePOLrqZ1AdsvIr6skCi3p8Prrx3jt36pMCmCqif3qObHXfTAuz0udk3jKPfGl0X+zuO/ank8OAACmMAk8AADjVBTFsk8bRmxW8ZYfp3byzi97NyugFxYtHr599qyhV8XlERHvTb3dS90ZsVs887IePmNKiz+7D8bf1/VxeXbE/+vho+6IeE8874s9fMZfied9O35/L4rLUyOqVCCZqO9F7BLP/e4kPIsBF98nV8X35wZxeXDE3IjVujDs7yKOjDjtUUmNVdbiezu8/roxXlNNApi2Yt/6ydjzlmtuleM7y6q0n4/+r4z7ftz72QEAwNQkgQcAYByKkNo/GN664i03Rvxzzvk3vZsV0EuLFg8/EM1Bs2cNfTLaYyO2SN2t8FKOf1bEEfGs33dx3Gkp/gw/H39X34zL4yLemTp/eryOssLPSREnxnM6JQf0RDy3TGjYPn6PH432Q6k31aH+K+LoiE+oukMd8f1SHr1ycHx/lv+d7JTa/w1uMI6hfpHaR7h8eJSjrB5bYYw/j/ZCzO+F0aw7ysu/Te3kNYBpK/avnx6pOntu6vzv3jUjroj+L4/77uz97AAAYOqRwAMAMD5HRby7Yt8bUjt557e9mw4wWRYtHv5hNFvOnjX04mjnRGwT8ZQJDPmriI9FnFVW+unCFBkRf57lurtj/F3NT+1KINtHrDGBIcv1vPwB1jkjCQqNi3lcHc3s+D2WRznuHrFlan8KfrzK44auiigTg74kcYeJGPlvsEww+1B8jz4v2k0iXhrx/NROnHlSxCoR5fdZ+d9U+QPfm1I7cebLEd/p8D1YJYFnrITIsarvXOX7H2BZEs/5RVE8PrUr/3XyzIjLo/8mcd99PZ4aAABMORJ4AABqKoqi/CT5IRW7/zRiU8k7MPUsWjxcHtG05+xZQ/Oi/ceIMoFidkT5Q+qnpxXvt3Jq/4D6BxHfTu1EiW8/6kgYuiz+fH8SzR7xd1Uef/bqiH+O+PuIsvrGaEdslRWRbk7tCmrfSO0f5v9kEqY7LjG3a6O5Nn6PZfJO+fvbKGJWan8/rpVW/Kn5MjmhPNbxZ+UQI/GVGGvUiiWDLH5f5RFMRzb07B2i2aGhZ89q4rmPFvMoE3Nu6vKwj6vQ53djvPb6MV6b1OOz4s9n08l8HkAdsZ9dGPvgMgm6yv+PDkV8IvpvE/dJhAQAgBok8AAA1FAUxWui+XDF7rdFvFb5cJjaFi0efjiaq0dimdmzhsq9VllZYrXUroZS9ik/hXznyFFcNCD+7MvqMl8aiWVGEl6enNqVPMq/t7JPWQnkt9E/NzHPiYg5l99nl4/EMvF7XDm1E5XK78fy+v7U/n68K/o/2MQ8oUtGS8D7iz91SEgrEzBXGuW1bicbAQy02NceNZLEs1+F7m9O7WNMq/QFAABGSOABAKioKIoXRHNJGv0HPcsrk3bK5J3bejsroB+NJPVI3hsAIwkvtzY9j14aSRq7o+l5QA90Or5wzH+HxX8bP+riXACmgwMi1ozYuULf98Ye+j9jT/yxHs8JAACmDAk8AAAVFEWxdjRfjFijQve7I16Xc/5pb2cFADA9zZ41VB6ftXaHbr+YjLkATBexx82xN94tLteJ2KzCLadH/x/Gbd/u8dQAAGBKkMADANBBURQzo7k0Yr0K3ctKDlvknK/v7awAACbf7FlDu0TztNROjvnZSPyqgSPnXhRRdOijwg5Al8Ve9+HYI28Xl1+PeHGH7uXRnZdE/w3jvl/3fnYAADDYJPAAAHS2MOLlFfotjXhHzvlbPZ4PAEBTyn8TvftRX7tv9qyhm6Mt48eLFg8fPAnz2LxCnxt6PguAaSj2vH8qiuINcVnufdft0L2s1nNR9H9N3Pdg72cHAACDSwIPAMAYiqIoP2W+S8Xu++WcL+vlfAAAGnbfCr62asQLR+KNs2cNnbho8fBdvZpAjF++n/XOCl2/2as5AEx3sfe9PfbLW8bltRGrd+j+jxELIvbo+cQAAGCASeABABhFURTlJ8wXVux+es55QS/nAwDQB/5/hT6bRFzUwzm8I+LpHfrcvGjx8C09nAPAtBd74B/EvvmtcXl5xGM6dN89+i6Oe87r/cwAAGAwSeABAFiBoij+JpqLI2ZW6H5FxN69nREAQF/4aYU+ZXWcniTwzJ419MRojqnQ9XO9eD4A/1fO+Uuxfz48VVubTx9J4vlRr+cFAACDSAIPAMCjFEWxUmr/0OmpFbpfH/G2nPMjvZ0VAEBfqHIs1RtmzxqavWjx8KJuPjjGLKs7fDzibyp0P7ebzwZgTB+K+IeIt3ToVx65+NnYcw/FHnpFRzICAMC0JoEHAOCvHRnxygr9fh/x5pzzn3s8HwCAvrBo8fCvZ88a+l5q/6B2NEXEJ6LfK6P/b7rx3BirfA/rYxFbVOh+ZTz3h914LgCdxZ44F0WxY1yuH/HCDt1fEHFqxM49nxgAAAwYCTwAAMspimKzaA6o0LWsuFNW3rm5x1MCAOg3ZRWcsRJ4Ss+O+MbsWUNvX7R4ePFEHhZjrBfN+RGvqtD94YiDJvI8AOorP9gS++l/icvhiCd06L5T9P1a3POpSZgaAAAMDAk8AAAjiqJYJ7V/OFRU6H5YzvmqHk8JAKAfnR1xcMRaHfqVSTzfmj1r6JPRLli0ePj6Og+J+54TzS4Ru6f2sStVzI/n3FDnOQB0R+yRfxb76nfE5RciZnTofmb0/U7cc9MkTA0AAAaCBB4AgLQseecx0ZSf/ntyhe4XR8zv7YwAAPrTosXD986eNVQm8JxToXv5b6x3lRH3/Djar0aUiTy/iCiP13ogtX/I+9jUTgh6VsTfRWyU2ses1HFNxAdq3gNAF+WcvxT76+Pj8sAOXR8X8ano+4q458FJmBoAAPQ9CTwAAG3vT9WOZSh/8LRjDj2eDwBA31q0ePjc2bOGXh+X29a4bYOR6IUfRrw55vVwj8YHoLrDUzsR8xUd+r00tRMvD+n1hAAAYBBI4AEApr2iKMo3Fqu8YXhfxLY55z/3eEoAAIOgrKxTVi/cpOF5fCdis0WLh3/f8DwASMuq8DwU++y3xeX3I57YofsB0ffKuOfrE3lmjFH4oA0AAINOAg8AMK0VRbFGNB9P7eMdOtkr5/yjHk8JAGAgLFo8vGT2rKHN4/IjEe9saBrlv+N2i7nc19DzAViB2DvfFvvtHePycxHFGF3Lvfj50fclcc89E3jk4TFGWfnnvpFYMhJ/+fVPY/ydJjA+AAD0nAQeAGCgFEVR/vtl1ZG4K+c80WMSTo14RoV+n4xnfWyCzwIAmFLKJJ5odpg9a+g/ol2QOlda6JY7IubF8y+epOcBUFPsoS+PPXy55967Q9dnpvbe/N0TeNxjU/vnHY8fiUdbbQJjAwDApJDAAwD0paIo1o/m86mdqLPKcrH8v1+eG/FfE3jGW6LZoULXmyJ2G+9zAACmukWLhz8+e9bQF+Py4IhdU+9+UPq7iJPLiGc61hSg/x2Y2kctvqhDv3fFHv0LOedLxvmcx3Z4/f5xjgsAAJNGAg8A0M+e2+H1Tm/QjaooinWiOatC1/JT5dvlnP2ACABgDIsWD5fJNfvNnjV0dLTvitguYihixgSHLisuXhvxqYhPx3P8EBZgQMRe+oHYf78jLodT+0M5Y/lw9L027vntOB4lgQcAgIEngQcA6FdV3lwbVwJPEaI5N1U74uHgnPP143kOAMB0tGjx8N1ppErO7FlDa0e7ccQrIl4Q8byI8msrjXL7AxG3Rvws4obU/oHv1SNjAjCAYk99Y2zDD43LEzt0fXLEaamdAFqXBB4AAAaeBB4AoF/1LIEnzIl4bYV+/xFxyjifAQAw7S1aPPzraC4ciWVmzxoqk6mflNpHpc4c+XKZuPPH6H/PpE8SgMlQJnZuEfHqDv22LYriopzzxTXHl8ADAMDAk8ADAPSrniTwFEXx9GiOr9C1/JT3jjnUfQYAAKNbtHi4/PfVXU3PA4DJE1vrpbEfL49XLKurPaFD99Oj79VxT53/r+j0/sCSGmMBAEAjJPAAAP2q6wk8I0dnnR3x+Ardd805315nfAAAAGDFyj12bMv3jMtPdej6lNQ+SuutNYZfpcPrKvAAAND3JPAAAH0p5/xwURQPxeVKY3SrW4Fn51Tt6KxPxvMv7NwNAAAAqCr22hfEXn+buNyqQ9ftot9no/9lFYd2hBYAAANPAg8A0M/KN9i6ksAzcnTWCRW6llV39qw6LgAAAFDLbhEbRTypQ7+FsZf/Ss75ngpjSuABAGDgSeABAPpZeUb9WMdd1anAc2aHsUo5Yk7O+Y81xgUAAAAqij33r4ui2Ct1PkprnYijI+ZWGFYCDwAAA08CDwDQzzq9wdbpjPtliqJ4WzSbVeh6bs7536qMCQAAAIxPjaO0do9+5THX3+7QTwIPAAADTwIPANDPOr3B1rECT1EUT4hmQYVnlUdn7VtlUgAAAMCElUdpbRzxxDH6zIj4SOztN8w5PzRGPwk8AAAMPAk8AEA/m3ACTzguYq0K/XZxdBYAAABMjpGjtPaLy3M6dH1Ran/gZv4YfTq9P7CkztwAAKAJEngAgH42oQSeoijKT/LtVOE55dFZV1aeFQAAANAN50XsEPFPHfq9L/b4F8fe/eejvN7piG0VeAAA6HsSeACAfjbuBJ6iKFaO5szyssMYd0bsV3NeAAAAwATlEPv398Tl9WnsJJxVI86IeN2jX4j7y59zrNThURJ4AADoexJ4AIB+NpEKPAdFPL/CM/bNOf+++pQAAACAbok9+U+LojgmLj/Yoeum0W/76P+pR329yvHaEngAAOh7EngAgH42rgSeoijWj+bgCuP/e875gtqzAgAAALppfsRbIzbo0O+k2PP/W+zlf7fc1yTwAAAwJUjgAQD6We0EniKk9tFZK3e4976I3cY5LwAAAGA5sR1/TjSbRJyXc36wzr1l/5GjtK6JmDFG16dEHBex03Jfk8ADAMCUIIEHAOhn46nA868Rr6ow9hE551/UnxIAAACwAodEvDvi8KIoyoo6Z8e+e0nVm6PvdXHf2XG5S4euO0a/T0T/q0d+LYEHAIApQQIPANDPaiXwFEXxl0/idXJ9xEnjmVA848XR7BCxXw7jGQMAAACmktgrPzOad4z8ct2IhRGHxNdPiPas2D7fW3GoAyPeGLH2WI+LOCPGfslIpZ9VKoxbOZEIAACaIoEHAOhndSvwLIh4Yod7HomYk3N+uM5EiqKYFc1hEVum9puF10VcVmcMAAAAmKIOSn/984a/iTixfC321OWHaE6PvfifxhokXv9D9J0Xl5/p8LznR+wTUVb6UYEHAIApQQIPANDPKifwFEXx6mjeXmHMM3LOi6tOIMZ9eWon7myW2ok7f3FYvPY5VXgAAACYzmJv/LTUPjprNIzuHQ0AACAASURBVE+OODZi/+h7SrSnlok6o3WO1z4b/crKt5t3eHS5L78gSeABAGCKkMADAPSzSgk8RVHMjOa0CuPdHnFolQfHmBtHc3jEP4/S5R9S+83EL1YZDwAAAKao8tirmRX6lRVzj4jYJ/bcp0Z7Ss7596P03T3iRxGrjTHe41K7Eu+5FZ4tgQcAgL4ngQcA6GdVK/CUZbOfX2G8uZ3KdRdFUSbslIk7G1cYr+wngQcAAIBpKfbQT41mp5q3rRnxvtRO5Dk92pNir/7b5TvEr2+N18pkn+M6jLV1xGhJQMuTwAMAQN+TwAMA9LOOCTwjpboPqzDWZTnnz63ohRijPBprs5FxXl5jfi+LWzeNca+qcQ8AAABMFWWlnFXGee/qEQdFzI299VnRnhD7618t9/rJEe+KeEGHcXbu8PoDMe7Scc4RAAAmjQQeAKCfVanAU5bLflyHfmXVnb0e/cWRxJ0tUztxZ9Z4JpjaVXgk8AAAADAdHZnax1WXiTjrjXOM8pisfSN2j2362dHOzznfHvFQ/HrP+PVXI4ox7h/rtZLqOwAADAQJPABAP+v0JttjUrtcdicfLN/8+8sviqKYEc1bIg6JePH4p7fMy2O8DWL8H09wHAAAABgosRd+IJozY1/8sWjfGXFwxLPHOVxZyadM2Nklxjsv2g/F+FfH9QVxvf0EprlkAvcCAMCkkcADAPSzbnxK7kcRp5QXRVGUCT/bpXbiTqcS3J08HFG+iXhMzvmmCY4FAAAAA6uslhPNObHv/ni0b0/tRJ71xznczIhdInaM8T4RbXm81hsi1hjneCrwAAAwECTwAAD9bKKfkssRe5RtURTvTu3EnedMcMzyTcnzI47NOd88wbEAAABgyoh9cvlhl4/HHvyTqV359tCIF41zuJUi/jXiXRF/nMC0JPAAADAQJPAAAP1som+yXRzxvIhzIp41wbGWjIxzXM751gmOBQAAAFNW7JuXRnNhURTlvnyr1E7k+YdxDldW033iBKYjgQcAgIEggQcA6GcTfZNt84htujCHslz38TnnX05wLAAAAJg2RhJ5Li2K4rJot4g4PGJokqchgQcAgIEggQcA6GcTfZNttQnc++eIMyJOyjnfOcF5AAAAwLQV++ryiOsryiiKYtNoD4vYaJIeL4EHAICBIIEHAOhnTbzJdk/EaRELcs53NfB8AAAAmLJir31VNFcVRfHq1D5a69U9fqQEHgAABoIEHgCgn03mm2x3R5wacUrO+e5JfC4AAABMO7H3/mo0Xy2K4hWpfbTW63v0qCU9GhcAALpKAg8A0M8mI4GnrLKzIOK0nPM9k/A8AAAAYETsxb8ZzWZFUQyldkWeLSOKLj5CBR4AAAaCBB4AoJ+Vn5LLqbtv3P3FnREnRZyRc/5zD8YHAAAAKoq9+XA0byqK4u+jPSxiq4gZXRhaAg8AAANBAg8A0LdyKIqiTOJ5bBeH/WXE8RFnxfDexAMAAIA+Env170ezdVEUL0jtRJ5t08QSeez9AQAYCBJ4AIB+V77R1o0Enlsjjos4J+e8pAvjAQAAAD0Se/cfRfO2oig+EO0hEW9P4/uZhgQeAAAGggQeAKDfTfSNtpsjjo04P+f8UBfmAwAAAEyS2MvfFM27iqI4ItqDy+uIlWoMIYEHAICBIIEHAOh3432jrXyD75iIC3LOD3dxPgAAAMAki719+QGdOUVRHBXtARE7Raxc4VYJPAAADAQJPABAv6v7RltZYrtM3PlszvmRHswHAAAAaEjs9csjsvcoiqKstrt/xJw09tHbEngAABgIEngAgH5X9Y226yPKT+FdmnNe2sP5AAAAAA2Lvf/t0exdFEX5IZ79InaLWG0FXZdM6sQAAGCcJPAAAP2uUwLP4tRO3PlCDpMwHwAAAKBP5JzvjGb/oijmR7tPxJ4Rj1+uiwo8AAAMBAk8AEC/G+2Ntm9GHJ1z/tJkTgYAAADoPznnu6I5tCiKE6PdO2KviDWTBB4AAAaEBB4AoN89+o22ayOOzDn/RxOTAQAAAPpXzvn30by/KIqTop0bcWfDUwIAgEpa8Y/Yk6N9cdMTAQAYxQYj7d0Rt0YsTe1P1B3a3JQAAACAAfGaoiiangMAAHTyg7ICT5m8808NTwQAoJMnjAQAAAAAAABMKY7QAgAAAAAAAACABkngAQAAAAAAAACABkngAQAAAAAAAACABkngAQAAAAAAAACABrXWXXfdtW+//fam5wEAAAAAAAAAANNSa6211pLAAwAAAAAAAAAADWnlnJueAwAAAAAAAAAATFutpicAAAAAAAAAAADTmQQeAAAAAAAAAABokAQeAAAAAAAAAABoUGuDDTa4d/XVV1+z6YkAAAAAAAAAAMCguOaaa67u0lA/aJ1/zjn/FRfrdGlAAAAAAAAAAACY8mastNIm3RrLEVoAAAAAAAAAANAgCTwAAAAAAAAAANCgVspNTwEAAAAAAAAAAKYvFXgAAAAAAAAAAKBBrZSXNj0HAAAAAAAAAACYtlTgAQAAAAAAAACABkngAQAAAAAAAACABrVSbnoKAAAAAAAAAAAwfanAAzABt9xyS3rGM57R9DQAAAAAAAAAGGCtpAQPwLg8+OCDaYut3pQO2n//9M7tt296OgAAAAAAAAAMKBV4AMbpqGOPTT+56aa0z/77p9e99rXpKU95StNTAgAAAAAAAGAASeABGIcbbrwxzT/hhGXXd999d5q7zz7ps5/6VMOzAgAAAAAAAGAQtVJ2hBZAHY888kjaeddd08MPP/w/X7v40kvT5y+/PL1pyy0bnBkAAAAAAAAAg0gFHoCaFpx6avru9773V1/fY9689E8bb5zWWGONBmYFAAAAAAAAwKBqJQV4ACr72c9/nt5/5JErfO1Xv/pV2u+gg9JHz/jwJM8KAAAAAAAAgEGmAg9ARTnnNGf33dOSJUtG7XPO+eent26zbXrNJptM4swAAAAAAAAAGGQSeAAq+ug556Rrr/t6x37v2XOPdMPi76RVV111EmYFAAAAAAAAwKBrJWdoAXR0xx13pAMPO7RS31/ccks67IgPpJPmz+/xrAAAAAAAAACYClTgAahgt733Tvfcc0/l/gvPOCNtt/XW6WVDQz2cFQAAAAAAAABTQSstVYEHYCyfvvDC9MUrr6x1z9KlS9POu++evnvdN9LMmTN7NDMAAAAAAAAApgIVeADGcNddd6V5Bx4wrnt//J//mY45/vj0gUOrHb0FAAAAAAAAwPQkgQdgDGXyTpnEM14fOvGE9JattkovfMELujgrAAAAAAAAAKaSVkqO0AJYkS/9+78vOz5rIh566KG00+67pW997WtpxowZXZoZAAAAAAAAAFOJCjwAK/CnP/0p7brXXl0Z6zvf+15asHBheu/ee3dlPAAAAAAAAACmllbKKvAAPNqBhx+e7vjlL7s23vuPPjpt9YY3pL991rO6NiYAAAAAAAAAU4MKPACPcu1116WzPvaxro55//33pzl77pm+8sUvpqIoujo2AAAAAAAAAINNAg/AcpYsWZLmzJ3bk7Gvue66dPZ556U5O+7Yk/EBAAAAAAAAGEwtJ2gB/K8PHH1M+tnPf96z8Q84/PC02aavS+s89ak9ewYAAAAAAAAAg0UFHoAR3/3+99NJpy3s6TPuueeetMe++6TPfeazPX0OAAAAAAAAAIOjlZISPAAPP/xwmrPnHumRRx7p+bOuuPLK9JmLL0pvfctbev4sAAAAAAAAAPqfCjwAYf6CBemGH/6wY7/1n/vc9JOf/nTU11dfffW0xuMfn26/444xx5l3wAHptZtskp70pCfVnisAAAAAAAAAU4sEHmDaKxNyjj7uuI79Zr30pWn77bZblnwzmpVnzkxnLFiQ3rjttmOOddfvfpfmHXhg+sTZZ9eeLwAAAAAAAABTSytlR2gB01eONXDOHnukBx98cMx+K620UvrowoXp69/8ZscxN9900/T2bbZJF1x00Zj9Ph2vvy36lf0BAAAAAAAAmL5U4AGmtdM+8pH0reHhjv0O2nff9MINNqiUwFNaMH9++vLXvpZ+e9ddY/bbfZ990o2LFi07egsAAAAAAACA6UkFHmDauvW229JhH/xgx34brL9+OnjffVPl9TL6PekJT0gnz5+ftt9ppzG73n7HHemg970vnX7SSdXGBgAAAAAAAGDKUYEHmJbKo7N2nTcv3XvvvWP2mzFjxrKjs2bOnFn7Gdu9+c3pMxdfnL5w5ZVj9jvr3HPTdltvnTZ+5StrPwMAAAAAAACAwSeBB5iWPv7pTy874qqTue95T3rZhhuO+zmnn3hiuuYb30j33HPPmP122Wuv9IPot8oqq4z7WQAAAAAAAAAMJkdoAdPOnb/5Tdrv0EM79nvmeuulI8t+y6+TVdbM5fo8de210/wjjki77bPPmLf87Oab0xHHHpuO/cAHOo8PAAAAAAAAwJSiAg8w7ex1wAHp7j/8oWO/M08+Oa266qoTft7OO+yQPnvJJenq664bs99Jp5+e3rLVVumlL3nJhJ8JAAAAAAAAwOBoJQV4gGnksiuuSJdcfnnHfjtuv316zcavSuNaIx91TxH/O+vkU9JLNvrHdP/994962yOPPJLmzN0rDX/1q6nVkl8JAAAAAAAAMF34CTEwbfzhj39Mcw/Yv2O/tddaKx1/5FFdffbfPvOZ6YiDD0kHvO/wMfvd8KMfpvmnnJwOfe9+XX0+AAAAAAAAAP1LAg8wbex32KHp13fe2bHfwuOOT2uusUbXnz9vt93ShZddmr7z/e+P2e/oE05IW2/5xrT+c5/b9TkAAAAAAAAA0H9a4zsfBmCwfOWaa9J5F1zQsd/Wb3xj+pc3bJEmtjau+N4ZM4p09qmnplmvfnV66KGHRr37wQcfTDvvNTd9/corU1EUE5gHAAAAAAAAAINABR5gyrvvvvvSe+bN69jvCWuumU6dP7+nc3nhBhukg2IuRx5//Jj9Fi1enE776EfT3F126el8AAAAAAAAAGheK2UVeICp7bCjjkq33HZbx34nHHlkWuvJT05jrotV1swOfQ7eZ590yeWXpx/fdNOY/cp5v/H1r0/rPe1pnZ8JAAAAAAAAwMBSgQeY0spKNgs/8pGO/V67ySZph7e+dRJmlNLMmTPTR085JW20+eZp6dKlo/a7995706777pu+dOGFjtICAAAAAAAAmMIk8ABTVs457b7ffsvasay22mrpzJNOmtQkmZdtuOGy47FOOfPMMft9+WtfSxd9/vNp2622mqSZAQAAAAAAADDZWskJWsAUVcT/zll4Wtp5773SD268cdR+Rx16aFpv3aelSutht/qEIw8+JF1+5ZXpF7feusLXW61WOnCvvdNWm21eeUwAAAAAAAAABo8KPMCU9pK/+7u06Kovp+NPW5iOOuGE9MADD/yf12dvuGHac+c5jcxt1VVXXVb553Vbb/1Xr5XzPvuUU5e1AAAAAAAAAExtrZSXNj0HgJ5qPWZGOnjvvdObt9gizZk3L31zeHjZ12fOnJnOPuWUVJTlbTocs/W/KvSrsa6+ZqON0o5vf3s694ILlv165ZVXToe9973pgLlz02Me85haYwEAAAAAAAAwmFTgAaaN5z372emaL3whnXb22emwY45ZliSz/nOe0/S00vFHHJGu/MpX0t8+4xnpIwsWLJsnAAAAAAAAANOHBB5gWimKIs2dMye9abPN0lPXXrvp6Syz5hprpK9fcUV6xtOfvmx+AAAAAAAAAEwvrSqnwQBMNU9fZ932Rd01sEr/cayrz3z6euO+FwAAAAAAAIDBpgIPAAAAAAAAAAA0qJWycg8A1VVYM62rAAAAAAAAANSgAg8AAAAAAAAAADRIAg8AAAAAAAAAADSoVek4GABqsK4CAAAAAAAAUJ0KPAAAAAAAAAAA0KCWQhEANVRZM62rAAAAAAAAANSgAg8AAAAAAAAAADRIAg8AAAAAAAAAADSolbKzXgAqq7JmWlcBAAAAAAAAqEEFHgAAAAAAAAAAaFArqxQBUEOHNTOXBXisqwAAAAAAAABUpwIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0qJUc9QJQXcclc9kZWpMxEwAAAAAAAACmCBV4AAAAAAAAAACgQa0K5SQA+B9V1kzrKgAAAAAAAADVqcADAAAAAAAAAAANksADAAAAAAAAAAANajnpBaDLrKsAAAAAAAAA1KACDwAAAAAAAAAANKiVslIRAJVVWTKtqwAAAAAAAADUoAIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0yBFaAHVUWTOtqwAAAAAAAADUoAIPAAAAAAAAAAA0SAUegFpU4AEAAAAAAACgu1TgAQAAAAAAAACABkngAQAAAAAAAACABrUqHQcDQA3WVQAAAAAAAACqU4EHAAAAAAAAAAAa1FIoAqCGKmumdRUAAAAAAACAGlTgAQAAAAAAAACABkngAQAAAAAAAACABrVSdtYLQHUV1kzrKgAAAAAAAAA1qMADAAAAAAAAAAANalWqJgFADdZVAAAAAAAAAKpTgQcAAAAAAAAAABokgQcAAAAAAAAAABrUSksd9QJQWa6wZlpXAQAAAAAAAKhBBR4AAAAAAAAAAGhQKyWVIgC6y7oKAAAAAAAAQHUq8AAAAAAAAAAAQIMk8AAAAAAAAAAAQINaTnoBqKHKmmldBQAAAAAAAKAGFXgAAAAAAAAAAKBBrZSVigCorMqaaV0FAAAAAAAAoAYVeAAAAAAAAAAAoEESeAAAAAAAAAAAoEGt7KgXgMpy6rBm5vIELesqAAAAAAAAANWpwAMAAAAAAAAAAA2SwAMAAAAAAAAAAA2SwAMAAAAAAAAAAA2SwAMAAAAAAAAAAA1qpaVLm54DwODIuVOHZF0FAAAAAAAAoA4VeAAAAAAAAAAAoEESeAAAAAAAAAAAoEESeAAAAAAAAAAAoEESeAAAAAAAAAAAoEGtlHPTcwAYHFWWTOsqAAAAAAAAADWowAMAAAAAAAAAAA1SgQegjiprpnUVAAAAAAAAgBpU4AEAAAAAAAAAgAZJ4AEAAAAAAAAAgAZJ4AEAAAAAAAAAgAZJ4AEAAAAAAAAAgAa1Us5NzwFggFRYM62rAAAAAAAAANSgAg8AAAAAAAAAADRIAg8AAAAAAAAAADTIEVoAdVRZMq2rAAAAAAAAANSgAg8AAAAAAAAAADRIBR6AWiqsmdZVAAAAAAAAAGpQgQcAAAAAAAAAABokgQcAAAAAAAAAABrkCC2AOqosmdZVAAAAAAAAAGpQgQcAAAAAAAAAABokgQcAAAAAAAAAABokgQcAAAAAAAAAABokgQcAAAAAAAAAABrUSjk3PQeAAVJhzbSuAgAAAAAAAFCDCjwAAAAAAAAAANAgFXgA6qiyZFpXAQAAAAAAAKhBBR4AAAAAAAAAAGiQBB4AAAAAAAAAAGiQI7QA6qiyZlpXAQAAAAAAAKhBBR4AAAAAAAAAAGhQK6sUAVBDhzUzlwV4rKsAAAAAAAAAVKcCDwAAAAAAAAAANEgCDwAAAAAAAAAANEgCDwAAAAAAAAAANEgCDwAAAAAAAAAANKiVcm56DgCDo+OSGR2sqwAAAAAAAADUoAIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0yBFaALVUWDOtqwAAAAAAAADUoAIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0SAIPAAAAAAAAAAA0qJWWLm16DgCDY2mu0Me6CgAAAAAAAEB1KvAAAAAAAAAAAECDWqlCMQkAarCuAgAAAAAAAFCDCjwAAAAAAAAAANAgCTwAAAAAAAAAANCglrNeAOqosmZaVwEAAAAAAACoTgUeAAAAAAAAAABoUCtllSIAKqtUgMe6CgAAAAAAAEB1KvAAAAAAAAAAAECDJPAAAAAAAAAAAECDWpWOgwGgOusqAAAAAAAAADWowAMAAAAAAAAAAA1qpby06TkADI5cobyOdRUAAAAAAACAGlTgAQAAAAAAAACABkngAQAAAAAAAACABrVShdNgABhRZc20rgIAAAAAAABQgwo8AAAAAAAAAADQoJZSEQB1KMEDAAAAAAAAQHepwAMAAAAAAAAAAA2SwAMAAAAAAAAAAA1qpeyoF4DqKqyZ1lUAAAAAAAAAalCBBwAAAAAAAAAAGtSqUkwCgBFV1kzrKgAAAAAAAAA1qMADAAAAAAAAAAANksADAAAAAAAAAAANajnrBaDbrKsAAAAAAAAAVNfKS/2gGaCqnDusmfGydRUAAAAAAACAOhyhBQAAAAAAAAAADZLAAwAAAAAAAAAADWotO+8FgC7JyboKAAAAAAAAQB0q8AAAAAAAAAAAQINaKasUAVBdhTXTugoAAAAAAABADSrwAAAAAAAAAABAgyTwAAAAAAAAAABAg1pVToMBYESVNdO6CgAAAAAAAEANKvAAAAAAAAAAAECDWkpFAHSbdRUAAAAAAACA6lTgAQAAAAAAAACABkngAQAAAAAAAACABrVSdtQLQGVV1kzrKgAAAAAAAAA1qMADAAAAAAAAAAANUoEHoBYVeAAAAAAAAADoLhV4AAAAAAAAAACgQRJ4AAAAAAAAAACgQY7QAqijypJpXQUAAAAAAACgBhV4AAAAAAAAAACgQa1K1SQAqM66CgAAAAAAAEANKvAAAAAAAAAAAECDJPAAAAAAAAAAAECDWs56AaijypppXQUAAAAAAACgOhV4AAAAAAAAAACgQS2FIgBqUIAHAAAAAAAAgC5TgQcAAAAAAAAAABokgQcAAAAAAAAAABrUStlZLwCVVTpCy7oKAAAAAAAAQHUq8AAAAAAAAAAAQINU4AGopcKaaV0FAAAAAAAAoAYVeAAAAAAAAAAAoEESeAAAAAAAAAAAoEGO0AKoo8qaaV0FAAAAAAAAoAYVeAAAAAAAAAAAoEGtrFIEQGUdV8xcFuCxrgIAAAAAAABQnQo8AAAAAAAAAADQIAk8AAAAAAAAAADQIAk8AAAAAAAAAADQIAk8AAAAAAAAAADQoFbKuek5AAyOKmumdRUAAAAAAACAGlTgAQAAAAAAAACABkngAQAAAAAAAACABjlCC6CrsiO0AAAAAAAAAKhFBR4AAAAAAAAAAGiQCjwAdVRZM62rAAAAAAAAANSgAg8AAAAAAAAAADRIAg8AAAAAAAAAADTIEVoAdVRZMq2rAAAAAAAAANSgAg8AAAAAAAAAADRIAg8AAAAAAAAAADRIAg8AAAAAAAAAADRIAg8AAAAAAAAAADSolXJueg4AA6TCmmldBQAAAAAAAKAGFXgAAAAAAAAAAKBBKvAA1FFlzbSuAgAAAAAAAFCDCjwAAAAAAAAAANAgCTwAAAAAAAAAANAgR2gBdJt1FQAAAAAAAIAaVOABAAAAAAAAAIAGqcADUEeVNdO6CgAAAAAAAEANKvAAAAAAAAAAAECDJPAAAAAAAAAAAECDJPAAAAAAAAAAAECDJPAAAAAAAAAAAECDWinnpucAMDiqLJnWVQAAAAAAAABqUIEHAAAAAAAAAAAaJIEHAAAAAAAAAAAa5AgtgFoqrJnWVQAAAAAAAABqUIEHAAAAAAAAAAAaJIEHAAAAAAAAAAAaJIEH+G/27gM8rus8EPYHYAAQYCfA3kmxiU2FalaXiyw7dux1mr1xYu8Tb7x2Eid2muOym2I71bHT/03iNG82cbJusWPZqrS6RFGiCnsVO0GCDQSI/uOOLFsSAcydwQyGIN9XvpI5c+4559659zx3wA/fBwAAAAAAAACUkQAeAAAAAAAAAAAoo0xvT0+55wAwcvT25ni/73/WVQAAAAAAAADyIAMPAAAAAAAAAACUkQAeAAAAAAAAAAAoIwE8AAAAAAAAAABQRgJ4AAAAAAAAAACgjDLR21vuOQCMHGnWTOsqAAAAAAAAAHmQgQcAAAAAAAAAAMpIBh6AfORcMntl4AEAAAAAAAAgLzLwAAAAAAAAAABAGQngAQAAAAAAAACAMsrkLgcDQF6sqwAAAAAAAADkQQYeAAAAAAAAAAAoo4xUEQD5SLNmWlcBAAAAAAAASE8GHgAAAAAAAAAAKCMBPAAAAAAAAAAAUEaZ6FHqBSC13hRrpnUVAAAAAAAAgDzIwAMAAAAAAAAAAGWUiZApAqC4rKsAAAAAAAAApCcDDwAAAAAAAAAAlJEAHgAAAAAAAAAAKKNM9Cr1ApBamjXTugoAAAAAAABAHmTg4YLV0d0dJ1pb42xXV1RWRIzKVMfE+vqoqqws99QAAAAAAAAAAL4vExJFcIHYdexYPLxzRzxzYH/sOHo0jp05c06byoqKmDp2XCyZOiXWzJkbNyxYGOPr6sowWy5o1lUAAAAAAAAA8iADDyPewzt3xv9Z93hsPHQoZ9ue3t44eOpkdrt/27b4/P33xWsXL4mfvubamDZu3DDMFgAAAAAAAADglQTwMGI1nzkTv3/3XfHYnt0F99HZ3R13btoY927dEj/zmuvjRy+/ongTBAAAAAAAAABIIaPWCyPR9qam+PWvf63fMlmF6Ojujr944Lux5fDh+PU3vCEylZVF6ZeLlXUVAAAAAAAAgPRk4GHE2dPcHB/+8pfjdPvZQdtVVVbG1LFjY2xtbXT29GQz9pxoaxt0n3u2bsmW2frEG98YFRUVxZw2AAAAAAAAAEC/MtErUwQjx9nOzvj4N/5jwOCdJGjnDUuWxhuWLY3l06ZHdVXVK94/eqYlHtixI768YUPsO3Gi3z7u27Y1FjQ0xE9edVXR588FIM2aaV0FAAAAAAAAIA8y8DCi/P1jjw0YeLOwsTE+cfsbY+6kSQPu3zh6TLx91ep464qV8Y9PPB7/9MQT0dtPsMXfP/5YXL9gQcxvaCja3AEAAAAAAAAA+iOAhxGjqaUlvvLMhn7fWz5tWvz+D78t6mtqUvWVZOp57zXXxszx4+Mzd911zvvdhmjMkgAAIABJREFUPT3xN488HJ/6obcMac4AAAAAAAAAALkoocWI8fVnn4mO7u5zXp9QVxe/9aY3R311dd6li5JyW7uPNcf/Xf/kOe89vGtXHDhxImaMH1/wnLkApbnErKsAAAAAAAAA5EEGHkaM72ze0u/r77n6mphUX19wv++55pq4a8vmOHrmzDnv3b99e7zryisL7hsAAAAAAAAAIBcZeBgRdh07FkdaTp/zelIy641Llw4p40lNZWXcsWxZ/NO6dee8t2H/vnjXFVcU3DcXohTXmnUVAAAAAAAAgDzIwMOI8Nyhg/2+fuWs2VGbGfplvGb2nH4DePYcPz7kvgEAAAAAAAAABiOAhxFhx9Gj/b6+ZMqUovQ/c/z4fl9vbm0tSv+l1NLeHk1nWuJMe0dUV1XFhLq6mDp27JD6TMqJHevb2ru6sgFSSYmyyWPGFGnGAAAAAAAAAMDLZdJUg4FyO3jqVL+vT0sCVYpwDWcqq/p9vbO7uyj9p7G7uTke2LnjFa9VVVbGu6648py2mw4fjm9v2RyP7dkdh073X1rs0ilT47WLF8frFi/pO77KnOM/vX9ffGvz5nj8hT1xoq3tnPfH1NTGZTNnxhuWLInr5y+IyoqKPI7uApLmerCuAgAAAAAAAJAHGXgYEX77jjdnM8I0tbRks828lCFm7sSJRen/ZD8BK4lRRSjPldbOY8fiC48/9orXaqqqXhHAkwQyff67a+OxF/YM2ldrR0es27c3u/3juifio699faycPr3ftnuON8dn778/njl4YNA+Wzra48FdO7PbgkkN8au3vbZoGZAAAAAAAAAA4GKWkSqCkaCmqjKmjxub3c419Gt4S9Phfl+fMmZsUfpPZ6BxXnx97Y7t8bv33BNnu7ry6jUJ+vmlr30lfuO1r4vbFi16xXvf2bIl/vD++17MNJSHnc3H4he+8v/if93+xrhu3ry89h35pOABAAAAAAAAoLhk4IE+D+/a3e/rCxoahnciA/jmxo3ZQJtCdff0xGfuuTumjRsXl06dmn3t3zZsiL946MGC++zo7o7f/M634y/e8SPnzXkCAAAAAAAAgJFIAA8XvebW1mxZqP5cPnPmMM/mXOv27o3Prr1/yP109fTEH953b/zNj/9E3Ld925CCd17S3tUVf3T/ffHn7/iRIfcFAAAAAAAAABerTG+vUi9c3L64bl02uOXVqioq4ob582P47pFzx3kpc07Pq+Ywa/yEeNOyZXHlrFkxa8KEqM1k4tTZs7Gl6Uh8a9Om+O7O/gOSdjU3x788tT7+qe+YX66i71ivnTs3XrdoUSyfNj0a6uuzs2lqackGEP37Mxti74kT/fa58fDhWL9v33kR7DQccl4NfQ2sqwAAAAAAAADkQwYeLmrbjx6Nrz//XL/vXT9/fkysrx/mGb1Sd29vNkPQS6qrquJ911wbb1+5MqoqK1/RdkJdXVwzZ252S0pu/dEAWXv++tFHX/HnGePGxcde9/pY9r3SWi83ve+9tyxfHm9cujSbBejbW7b02+c927ZeNAE8AAAAAAAAAFBsmdzpJODCdLarKz59993ZIJlXSzLS/OQVa1KkWymiHGMlwTufvuNNceWs2Tnbv3nZpfHMwYNx19b+A25esqChIT77lh+OcaNGDdpfdWVV/Oott8XBU6f7+j1wzvtJBp6LZi1Jc5wXy7kAAAAAAAAAoChk4OGi9bv33h27jzf3+96bli6NSxobh3lGg/uZq6/9QfBOCu+8/PJBA3hGZTLx27ff8WLwTgpJUNN7r7oqfunrXzvnvUOnT0dLR3uMqalNPT8AAAAAAAAA4EUCeLgo/d0Tj8d3d+7s973Jo0fHf7/2NcM8o8ElZa7esWpVXvvMmzgpWwLr4KlT/b7/9pWrsu/nY+X0GdnAnyR70asdOd0SYxoE8AAAAAAAAABAvjLR21PuOcCw+tKGDfFPT67r972qior46G2vjbE11THs90Y/pbxe8uZly6Iyqcs0SJv+LJw0acAAnh9aujTvY6zs22aNHx/bjx07571TZ9uG/5yVQ87PoPfiOA8AAAAAAAAAFI0MPFxUvvrcc/FXjz4y4Pvvv+41cdmMGcM4o3SunTO3oP2mjh3b7+tJEE6+2XdeMrGuvu/f5wbwdHSfm5UHAAAAAAAAAMgtE/kl9IAR69+ffSb+4pGHB3z/7ctXxDtWrIzz7Z6oqaqKuRMmFjSvukx1v68vbpxc8HHWV/ffZ09P73l37srGeQAAAAAAAAAgDzLwcFH4whOPxxefWj/g+29YtDh+/vobhnFG6c0cPz4qKyoK2re6qqrf16eOGVPwfKoqKwveFwAAAAAAAAA4lwAeLmi9vb3x+YcejK9vfH7ANq9ftDh+9ZZbh3FW+ZmULVlVXGNHjSp434oCg4kAAAAAAAAAgP5l1HrhQnW2qys+dc898dCe3QO2edOSpfGRm26KF2NSyn0v9D/++FG1A75XaJ/V2Sw6xe0z93sXijTHeDGcBwAAAAAAAACKRQYeLkjNra3xsW/fGVuamgZs82OrVsX7r71uGGdVmJqqEtymkugAAMB57+E9u+ORPXsGbfPWS5fHosbGvPq9d/v2eOrA/kHb/Gjf96U5Eybm1W9Hd3f86UMPDtpmxrhx8c7LLs+rXwAAAAC4GGSiV6YILiy7mpvjo9++M460tAzY5r9ffU38xOrVcV5d/wNMJZNkyyl0ngPtlrxe9D57z6/zWSppjvFiOA8AAJTctqaj8c3Nmwdtc/Ws2bGooSGvfp8/fChnv7cuWBhzxk/Iq9/u7u6c/a6YOjXeufqyvPoFAAAAgIuBDDxcUJ7Yty9+8+67orWzs9/3qyor45dvvCluX7x4mGdWuErZcgAAuIB09fTEvz6zIWaNGx83L1hQ7ukAAAAAAJwXBPBwwfiPTZviTx56MLoHyH5SX10dv/X6N8QVM2cO88wAAIDEUwcOxOf7ntlfOHEifu3mW8o9HQAAAACA80ZmwHI4MIJ84cl18cWn1g/4/uTRo+Mzt98RCyZNGrgEVLkNNq9iz7m3BH2+1C/OAwDAqzS3tsZfPvZo3LNj+yvf8NxUHPmex7Ttz5d+AQAAAOAiIAMPI1pPb2987qEH4xubNw3YZlFDY3z69jdGQ339MM4MAABIsmN+9fnn4u+eXDdgmVsAAAAAALIBPH71jZEpCd75/e+uje9s2zZgm+vmzImP33pb1FVXx/l/rZciBc9A+w0lBU8p+rzQOA8AAM8dPpwNtt/Z3DxAC8+PuaU5P6VMrykFDwAAAAAMFxl4GJF6e3vj99aujbu2Dxy889Zly+IXXnN9VFZUDOPMAACAu7dvj0/ff1+5pwEAAAAAMGII4GFE+svHHhs0eOd9V10V71x92TDOCAAAeMnR1jPlngIAAAAAwIiSiR6pqxlZvrpxY/z7c8/2+16Sbecj198YdyxeHCPu2u4dYL7Jy4Uey4DVrnqL32dPjLxzXog0x3gxnAcAgMGkeRy6WJ4fh6JU53Gg7x5D7TdN+6F8vwEAAACAC5gMPIwozx0+HH/++KP9vldVUREfu+XWuGX+gmGeFQAAQPEtnzI1fmzFykHbzBo/bphmk1umsjLnfKeNHTtMswEAAACAkSWT6jfv4DzQ1tUZn157f3T39PT7/i+95vq4Zd78dL9Nej4aLFtOocc02H7FPk9DmeeFxnkAAC52qZ6HPD/msmbGjOyWUynOYwHP99WVlfH+q65O1zcAAAAA8Aoy8DBifOHJJ+NQy+l+3/vxFSvjTYuXDPOMAAAAAAAAAACGTgAPI8K+Uyfjq5s39fve4obG+Jkr1wzzjAAAAAAAAAAAiiMzcN0eOH98ccPTA5bOOtl+Nn7um/9RsrH/4PY3xpiampL1/wOD3YvFvk97h9DngLW+htDnSJKyHAQAADlcLM+P56O0z7Q+HwAAAAAYLjLwcN47cfZs3Ldz54DvH25pyW6lMlDgEAAAAAAAAABAMWT8Qh3nu+/u2h2d5QyiOR9+8fR8SsCTq98LnQQ8AAC5SfByYfD5AAAAAMCwkYGH895Thw6WewoAAAAAAAAAACUjgIfz3r6TJ8s9BQAAAAAAAACAkslEr5zYnN/OdHaUdwLJPTIc98mAYwxh/MH2K7jPQfq7KNaTFMd4UZwHAIDBpHweKtNzU0/fuPtOnYydx4/HoZaWONra2redibNdXdHR3R3tXd1RURFRU1WV3cbW1Mbk0aOjob4+Zo4dG5dMmhSN9aPLMveiSF3i7MJ7rm3v+4yfbzoSW44dy/6ySHNbW/Y7Z1dPT/azHpWpjil9n/WsceNiSUNjLJs8Ofv6+aa7b75bm4/FlqNHY/eJE33H0Ronz7ZHZ093dr51fceRXK9zx0+IJY0NsXzylKiqrCz3tHPa03cs2/qOKzmm5L481ndcHX3340vHNSqTyR5b8hkl28y+z2lx3+c0qa6u3FMHAAAAGDIZeDjv/fM7frTcUxgWt85fkN2K6d2rL8tuxfSxm27ObgAA8PlHH4n27q5zXk8CY3L5z61bY0OOcrk/vfrymDpmTMHze7kjZ87Ed/fsjsf374vnm5qirbNzSP0lwQNXz5wVt8ybF1dMn1GUOb7aQy+8EA/t3TNom7ctvTQWNzSUZPx8JcFPn3v04UHbzBg7Ln5y1eq8+/7Txx6Ntq6BP7OPXHf9gAEqScDWw3tfiDu3b4t1Bw5k55lWEjRyZd/ne/sll8RrZs+JTBmDYHr7juOJA/vjrh074pF9e6M1j2t4TE1N3Dhnbrx1ydJY0tjYb5u2rq6+8/zIoP186JrrojZTvB8ldfcd07r9+2Ptnl3x2L59cfzs2YL6SQLrkvvx+jlz4rJp06MyicADAAAAGGFk4AHIR6rfVrauAgAXh3t27YyWjsIyZj575HB2G8x/WXppTB1deKabJDhg7e5d8fWtW+KZw4OPla8kIOgbff0m25zx4+PHLl0et1+yKKqKGDiwvflY3Ll9+6Btrps1OxZPmlS0Mb+vgAyb3d3dOee7YsqU+MmVq/KeTnKtnWpvH/D9X7rmun7PfbLf3z39VBw4fTrvMRNJsE8SLJNsSdDWu1asjDcvWjzs2Wzu7TuOf9jwdOw9daqg/ZP79Fvbt2W3a2bOig+suSpm9123L9fZ1ZXz8/vAmqujtggZiZJgoa9s2hhf3bI5m2lnqPb3fb5f2bwpuyWf039ZuizesmRp1BUx2AgAAACg1PwkAwAAgAtOkm3nf69/suDAjXy8cPJk/OEjD8e/b9oYv3D1tXHZtGklH5PBJUEhv/fQA/HkwcGzPOUjCdr63GOPxje2bo1fvf6GbCm1Utt/6lT8/sMP5Qx2y8dj+/fF+oMH4j2XXR4/sXxFVAxztpoHXtgTn+87j0n5slJIPqe/enJdfGnj8/G+K66M2xdeUpJxAAAAAIpNAA8AAAAXjJNnz2YDHpKMKcNt94kT8ZHv3BnvvfyKgrLMUBwbm5ri4/fdEycKLMeUy/bjzfHB//xG/PoNN8at8+aXZIzE2j27s9fyUMu99aezpyf+ev2T2XP1iZtuzpYKK7WklFkSVPel558r+ViJJEDo9x56MFuKLvms6qurh2VcAAAAgEJlepV6AchDjjUzW2nAugoAUAzJc1U+z1ZJAM1H7707m4GjXJLZfuGp9dHV3R0/vfqyofWV4tjzPUdp+02OpCT9luh5ufd7833q0MH42L33RHvf+S+lJADmd767NjIVlXHDnDlF7/9fnnsu/vqpJ4ve76s9tPeF+LW774pP3Xpbys8v/+sikQTvJME0d+/aWcAsh+bBvmP8pW9/K/7w9bfHmJqaYR8fAAAAIC0ZeAAAABjxkuCdD3/nzjjZ3l7uqWT94zMbYvnkKbFmxoxyT+WiseXY0fj4ffeWPHjnJUkYy+8+9GD8zaS3xrQxY4rW7z/1XTt/v+HpovWXy4bDh+IT998bH7vhppKNkWTeKUfwzku2NTfHb669P37vda+PymEuGQYAAACQViZnNgkA8mRdBQAojt5I82zV0tGRzbqSb/BOVUVFzBo3LqaPGRPjR42KUZlM1FRWZbOrnOnsiKOtrbHv1Klo6vtvIf740UfiH972tshUVha0f3qleP5Md+4Lm0fx53uirS3+5/33xdmurtT7JIEctVWZ6Ojuiu4CswK1dXXG5x57JH73ta8raP9X+86OHQUF7zTU1cUlkybF5Pr6qO27jpPzcLjlTGxrPpbqvnjq0KG+43g0xUj5XxeP7d8f/7bx+bz2STLlzO67N6eMHh3ja0f1fU5V0dM3bmtnZxxrbYsXTp2MQy0tefW5/tDB+PKmjfEjl16a134AAAAAw0UGHgAAAAryy9e9Jrp6es55/ZF9e+OeXbsG3feti5fEqqlTB22TNqvJnzz+WBw6k+4v85NAgNvmz4+b586NlVOmZoN2cjne1hZPHjwY9+7eFY/v3586fCGZ07e2b4+3LF6ccg8K9fuPPJwz0GrehAlx45w5sarvc587YXw01NVnX09KQiVBLrtOHI91Bw7E3X3X7tE8grae6NvnmcOHc17Puew8fjz+OFUQzYuSa/dNl1wSd1yyKBZMnNhvm+TYthw7lr0Ov7NzR3QMkp0oKTVVbMl4yf2ZRhKsk6wL18+eHXPGj8/ZPvmMkjl/ZfPmbKBdGv/wzIZ4w8KFMa62NlV7AAAAgOEkgAcAAICCJMEQ/TlypiVnAM+yxsa4dd68Ic8hKf+Ta6yX3NI33s+tuSom1tXlNUbS/nULFmS3pFRXEpCw4fDhVPt+Y9tWATzDYP3BgwO+t2LylPhvl18Wq6dO6/f9ioqKmDBqVFw+bXp2e89ll8U3tm6Nv33q6WyGnTT+dePzQwrg6e7pic889OCgATYvl1zLH+y7lifluJaTY1vad68l239duTL+7InH46G9ewueZ77u3L49VaacH1++PN7bd96rK6tS991YXx9vW7I03rJocXxp48b4uw1PZ8/jYJIMPl/bsjnevWp16nEAAAAAhktGpReAPKRZM62rAMDFbhgrKX3hqXTlht6zavUP/tJ+COPOGz8h/uh1b4i/f2ZDfPHZZ3K2397cHPtPnYqZY8cVPuhgCql0Vap+y1dBq19JhpoPXHlVvHnRorzGra6oircvWRZXz5gZH733nth/+nTOfZ7Yvz9OtJ3NBgIV4t83bcpm4MklKfv281dd84OgsDzO5ZT60fFbN9+aDWD5s3VPRE8hZcPyvC6+0jdWLklQ3duXLvtB/3mqqqiMdy5fEQsmTIhPrr2/36xgL/ef27fHu1cK4AEAAADOPzLwAAAAMCJtPnY0nms6krPdHZdcUtSMG0lWk/euvixOt7fH17Zuydl+/cFDpQvgoV8NdXXxmdteFwsHKC2VRvKZffb1t8cHvvXNONbWNmjb7t7ebOm4pJxVvk53tMc/P/tsznaVfdfdJ268KW6cMzfvMV7uh5csjUl19fHbD6zNzrtUXjh5MrsNJsnC9f3gnSG6Zuas+MCVa+JPnnh80HZHzpyJrceOxeKGhqKMCwAAAFAsmSjhD2sALjhp1kzrKgBAbskz0xCfm/5z27acbSbX18cHr1hTkme0n7ns8rhvz+441d4+aLsdx5sLGz/VPgWcx1TPtGnHz7PfQuabp/rq6viD174+5o4fP+SxGuvq4pevvS4+et+9Ods+ffhQ3LHwkrzH+PKmTdHS2ZGz3c+vuSpunD2nKOfvxtmz4yN9x/X7jzyc34553LfPHsldZu6nV64q6vXww4uXxN27dsXGo02DtkuCrRZPmlS0cQEAAACKQQYeAAAARpwkc8gDe1/I2e7dK1dFXXV1SeaQBIq8bt78+HKOMkGHz7SUZHz69z+uuPLF4J0iSUpprZg8OZ5rGjwoZFtzc959d3Z3p8ridMvcefHWxUvy7n8wty9YmM1glZSUKoXdJ04M+n6SJWn2uOJ9Ti955/Ll8Ym19w/aJleADwAAAEA5COABAABgxNnY1JQz88342tp4w4KFJZ1HEtyRK4DnZI55UjxJ4E4hWXByed38BTkDeA6cPp13v0kQWq7roy6TiQ9euSbvvtN4/xVr4pF9++L42bNF7/tE++B91pcosC65J5Nz1tbVNWCbXTmCiwAAAADKIfNiXmwAiqM3rKsAAGmfhwp/bnrq8MGcbV47b35UV1YMaZxcLpk0MWebMx0dJZxDqZ4/C+m39J97Lj+ydFlUVBR/jCunT8vZprOnp++zbo/RNTWp+71r186cbd7Rd0yT6kZFKc7b6OpMvHvlyviTJ55IuUf666Kju3vQ95taW6O7pzuqKitTjp1Opu+eX9bYGJuOHo3pY8bEzLFjs9uMZBvz4v9PSuv53gYAAACcb2TgAQAAYMRZ0tAQP7psWew/fTq7HWxpOSdg4MY5c0o+j4mjRkV1ZWU2eGMg7TkCGSiO5HO4uUSf+fTRY3JmdUmc6uhIHcDT0td2/aFDg7bJ9B3T2xYvTj3PQrxxwcL4+2eeyZnRKl+5Muyc7TuXD+zdG7fMnVvUcRO/c/MtUZvxIy8AAABgZMlEj984AkitN8WaaV0FAC52aR6HkueqITw3XTNtRnb7QXe90dTWmg3mOXC6JQ6eaYnlkxqG5dlsdHXNoOWCsoFFhcwj1bNnFNB3ivaFfD5p2vembNfffjksa2iM0ZnqknzmSVKfJIPLjuPHB213tqMz9fhPHjgYXYMEfiWunDYtJtaOKul1XFtZFbfOmRtf27Y1d+Oe9NdF46i6nG3+8sl1sXry5JiYom0+kmPyvQwAAAAYafw6EgAAACNeRUVFTKkfnd0unzq8Y1dly3QNrCdNIA5DtnLKlJL2P2nUqNiRo0179+AZel5u/aHcZeBumDU7dX9DcdPsOekCePJwycRJOdscbWuLD99zd/zWjTfH7HHjijo+AAAAwEgjgAcAAACGoDtHpg8BPMNjwYQJJe1/XE1tzjZdeWR9ef7o0ZxtVk8Znmi05Y2NUVNVdU4ZuqFYNWVKNnNRrjPywqlT8b5vfTPetnhJvL1vmzp6dNHmAAAAADCSZNLlNgfgRanqQZR8FgAA57e0z0wj+7mpu7c3nm9qirauzkHb9b7s38VXqvNYSL9p2xcy39z7zBo7tsC+06mpqszZpqe3J9UckkCZPadODtpmXE1NzBw7JlV/Q1Xdd2yLJ06K54425WiZ/rqYOKo2rpg2LZ48dChn286envi3zZuy29KGhrh2xsy4ZsaMWDRxYja7FgAAAMDFQAYeAAAASKG3tzcbdLHx6LF4+sjhePzAgTjd0VHuafE9DXV1Je0/U1mVs03abEtJ1plcbeeMH5+qr2KZ1zde7gCe/PzYsmWpAnhebvOxY9nt7599Jlu27Mpp02PN9Glx1fQZMb42dxYkAAAAgJEqM8J/4RHg/GNdBQAudhdAAp7Wzs5ssM6ekydjd9+248Tx2NzcnH29IKU81lIkyinl51OCfpMcLeOTElclPM+VKTLB9KY8bwdOn87ZZuaYscN6j8weNy5dwzzmtGbq9Lh6+ox4/OCBgubUfPZs3LV7V3ZLzv6iSZOy/V01bXosa2yMKtl5AAAAgAuIDDwAAABclI61tcXBlpbsduBMSxzq++/+ltPZPyeBA4wctZlMqgCb88WR1tacbZLsM8Np0qjSZDD6yNVXx8/eeWecaB/aPZXEDW1tbs5uX3z+uRhTXZ3NznPd98ptjZOdBwAAABjhBPAAAABwQevo7o7NzS+W5dl+/Hg2o04SqHO2q6vcU6NIMpWV5Z5CXk62t+dsM9zloiaWKGCosa4+fuemm+JX7rs32op4z7V0dsbavS9ktyR469KGxrhp9uy4ec6c7JgAAAAAI00mUtZnByBSlhuwrgIApFLC56aunp54YN/euHfPnlh36FB09HSXbKycsmWVCjjWNPskbUpxHguZc6rmpZlvJsm+U+rn8CJ+Hi0duQN4aquqhvW7RV0yXi4FXm/LJjXEH916W3zywQfiaFtbAbMbXE/fnJ472pTd/vKp9bG8cXK8Yd68uG3uvKjL+N01AAAAYGTwUwwAAAAuGO3d3fHVbVvjS5s3xYkUWU6gHDq6e3K2Ge6sQtVVpR1vyaSG+Ovb74g/e+rJuGfPnpKNk4QXfT+Y5+mn4vb5C+Jdyy6NhrrSlAgDAAAAKJZMyl+RAyArVQqeks8CAOD8lvaZqbjPTQ/v3x9/sv7JaGptLWq/g1ne2Bg7T5xIURqolM+I+fZdqs8nbftSnYvz4Tk83Xnr6c0dwNPbW/x7pDgKn9O42pr4jWuvi7ctWhT/smlTPHLgQDZ7Tqkk92US0PftXTvjZ1atzo4LAAAAcL6SgQcAAIARrbOnJ/58/fr4jx3bSz5WVUVFNmjn2hkz4sZZs2PGmDHxo1/7aooAHviBmhTlqoa77FvnMI53aUNj/NYNN8aR1ta4c9fOuHfPC7H39KmSjZfcn3+6/snYcORI/Ma110Z1mnJhAAAAAMNMAA8AAAAjVmd3d3ziwQfjiUMHS9L/hNraWDJpUrb8z/LGZJscdZlXfpXuLmEGES5MaQJ42ruGN4CnY5jHS0ypr4+fWr4iu+04cTzW7t0bj+w/EDtPnijJeN/dtzfaHuyMT914U1QNc4kyAAAAgFwy52U2ZoDzlQpaAAC5DWMFrU89+khRgneSoJy548b1beO//9/5E8bH1PrR5zZ+1by7e3KXQypp1SgVtErbb75SzGNMdU3ONifa24f1mE62d+RuVMKqXgvHT8xu/23FqmxmnkcPHIh1hw/GU4ePRGtXZ9HGeeLQofirp5+OD15+RdH6BAAAACgGGXgAAAAYkb60ZXM8sG9f3vtNGjUqVjZOzmbWuWTixGzATmNdfcHz6EwTwAMv01hXl7PNibNnh2EmLxuvfXjHG0ySmeetl1yS3ZIMV5uPHYv1hw/Fur5tU9//H2rWqy9v2xo3zZodKydPLtKMAQCS5SLjAAAgAElEQVQAAIYuE71+0AiQXoofFFtXAYCLXppnpt4hPTcdPHMm/u65Z1O3n1hbG3csWBC3zJodCydM6Gc+hc+lo3vw0kO9UeCxpgpS6Cmg7xL1m6Z9b8p2hSj5c3jxruvJdaNytjnQcnpYv1scTMbLpbeQ621okmJjyxsmZbd3X3pptHZ2xtNNTfHk4UPx6IGDcaj1TEH9/u2zG+Jzt95W3MkCAAAADIEMPAAAAIw4SfBOrsCZl/zYkiXxnuUroraqqujz6Oybw/lSuYmRIynRlsu+0ykCaopo7zCPV6j66up4zYwZ2e3nL4/YceJErN23N+7asydbeiutZ48ejd2nTsa8FJ8FAAAAwHAQwAMAAMCIcri1Ne7fuzdV219Zc1W8cf78ks2lOUWZo54hlvvhwjO1vj7GVFdHS2fngG1OdnRkr/Wk7XDYevz4sIxTbElGrWR77/IV8dCBA/GF556NPadOpdr3of37BfAAAAAA542MXxUEyEOaNdO6CgBc7NI+DxX43LR2797oThEU8/ZLFsUb580v6fNZU2tbzja93/9XCfQW0HfaZ9pS9JtPu3yV+jm8yOdt2aSGeOLwoUHbPH/0aEydPSddh0Nw+MyZONqW+1ou6LoYJhV9/9wwY2ZcPXVa/OajD8ejBw/m3GfjsWPn7fEAAAAAFx8ZeAAAABhRHkvxF/Ojq6uzGTlKbV9L7rJDvTLw0I/Lp0zJGcCTBKHcNgwBPI8eyn1PFVNS/q6mBCXtEkm/n7z2NfG+u74d+1taBm07UsqGAQAAABeHTPhBIkAeUqyZ1lUA4GKXKlNJb8HPTdtP5C71c/PMWTE6kyn5s9mW5uacbV7MwFPAPNLs01tg36XoN1X7wj/34oxfYnlc12umTo3//ezgbR47eCA6urpKFuzykrUpS9Llc3xJ4Nqh1tZsOasXTifb6dh96mQ2aGbN1GnxiWuuHcKMB1dbWRk/vnhJfHb9k4O2O56UwDsfrhsAAACAkIEHAACAEeRUe3u0dHbmbLdq8uRhmE3kzKCS6OrpGYaZMNIsHD8h5owdmw1sGUhyrd+z94W4IykFVyJJUM2Go01F6y+5R3/5ge/G3pbT2Uw7/dl2PHcQ3lBdPnlKzjYd7k0AAADgPCKABwAAgKKqqqzI2aanwKQXLV25g3cSjaPqChsgD88cbYqDZ86katvd2xtVFbnPCxeX18+ZG3/7/HODtvnXLVviDX3tqiorSzKHL27aVNT+xtXWRlNb64DBO4n9Z1ricOuZmFo/uqhjv2IeNTU529SU6JwCAAAAFCKTLrc5AOlZVwGAi1uaQJXu3iTzRf7PTd0pM2b0vlgDKu/+8/GPGzembtvV0x1VJSmDVMhxpix1VZJ+82mXr1I/hxf/vN0xf17806aNg2aCSTLZfGXHtviRRYtT95vWM01Ncd++lOWzstId36UNDfHowYODtrnnhRfiXUuX5jF2fk51tuds01CXBPr5/gYAAACcH2TgAQAAoKjSZOBp6+oqqO+6TLqvsWkz4xTqvr1746mmI6nbJ2W0aksSwMNINrF2VLx+7tz45q5dg7b72+eei8smT4lLJkwo2thJqatPP/F40fp7uWumTssZwPP1nTviRxctiuoS3Rebmptztpk3blxJxgYAAAAoRMYvGgHkIe0v3QIAXMRqK3P/hfzJ9vaCnpuSgIckw09Skmow648cjjfPm5//ACkcaGmJzz21Pq99Orq6Y3SmuiTzKcnzpwQ8hfef5zzetXhp3LVnz6BZeJL3Pv7wQ/H5m28pStmpJIDuow89FE1tbfntmPK6eM30GfGnG56OnkHu02TsL23dGv916bL85pDSt3btztlmdeNk398AAACA84YMPAAAABTV2JqanG12nTpZUN9J8M6cseNy7v/QgQPR1NYak+vqCxpnIEfb2uLXH34wWjo789ovCZiYWNSZcKGYNnp0vOOSRfF/t24ZtF0S8PKLa9fGZ66/PuaNG1/weMfPno3fePih2HrieMF95NJYVxdXTpkaTxw+NGi7f9y8Ka7oa7ds0qSijv/ggf2pMmRdP31GUccFAAAAGAoBPAAAABTVmOrcATxPHD4ce0+fjtljx+bd/6rGxpwBPJ09PfH5p5+K37nu+rz7H8iOkyfiE488HIdbW/Pet7XAkmFcHJIsNPft2xuHclxbR9pa4+fuvy9+dsWq+KH586OiIne5upd75ODB+Oz6J6O5/exQppvK2xdekjOAJykt97GHH4o/uPHGWDi+OOXBkvv0D55cl7PdVVOnxpT64gb4AQAAAAxFpjdH2nEAfqA3V371vretqwDAxW5Cigw8yV/c/9pDD8Svr7kqVjY05tX/zTNnxtd27sjZLglW+PMNT8cHVq3Oq/9X6+6b679t3xb/sGljNjCoEC2dHfk/J6Zp39cm/37TNMm/3zTte1O2K8R58RxeyOfRZ1RVVfzKlWvilx/4bs6PJ8nm9Lmn18d/7NoRP75oSdw4Y0ZUVw1cti4pY7Xu8OG+a3hrPNXUlPfcXq43j+O7eurUWDRhQmw7cWLQdic72uNDa++PX7zs8njt7DlDml8SGPipJx5LlSErKV12XlwzAAAAAN8jAw8AAABFNbW+PpK8ILn+ajzJZPNL310b0/razx03LkZVZaKjuzuOt5+No21n49fXrInLJk85Z78k4Gfe2HGx+/SpnHP58o7tcfDMmfjQZZdny/rkIwnWuXfv3vjnrZtjf0tLXvu+WvPZ0mc8YWRb3Tg5fmLxkpyltF6y4+TJ+PS6x6Muk8neE0mwTHKN11ZVRWd3TzbLzs6+NhuONsWpjo4Sz75/H1y1On6x7x7PJQlK+sy6J+Kbu3Zlz8GVU6dmy+Wlte3E8fjStq1x3759qdrfMGNmrGzML3AQAAAAoNQyqX6jD4AXpVkyrasAwEWuprIyZo4ZE/tSBr0kZYP6Kx30wunTcVnj5HNeT/5a/z3LLo3/9fijqfp/5NDBePI7h+PWWbOz2XtWNDRGfab/32dJShRtOX48m8njuwf2p8rksXTixNjct89gjiTHV4rnxBdT2pSg3978+02VMShlu0KU+jl8GI7vvX3XdXLdP3TwQOp9kuCXxw8fym6FWj5pUhxua4ujfdtgsiE1eRzfikkN8cPzF8TXdu1M1f6ZY0fjmUeOxviamrhi8pS4ZMKEmNW3lkysrY3aqhfv2fburjjZ0ZG9p3acOhlPNzXFgTNnUs8p6ftDSVYu39sAAACA84wMPAAAABRdEniTNoBnIIPtf8OMGXHdtOnZ4Jw0Onp64tsv7MluiUmjRkVD7aioqaqMnt7IBuocPduWDYZI66VAorfMXxD/5T+/MWjbJBMK5FJZUREfX3NV/M/HH43HDx8eljEXjh8fn7ru+vjA/ffmbFuZPinO971/5arYcuJ4ziC3l0sCdO7bvy+7FVOmsjI+efU1MbHv/gcAAAA43wjgAQAAoOiSoJZv7t6VKoHhQPaePj3o+796xZXxwbX35ZV94yVJSauhlLWaUFsbv3L5lXHNtGnZP4+rqRm0TNGm480Fj8XFpbqqKn77muvij59+Ku78XsBZqSSBdr95zbUxuro6elJkpKmqqMx7jOrKyvjUta+JX3xgbewdYlDfUCTz+PhVV2dLlQEAAACcj5TQAshHqrT51lUAgIXjxsUPzZsf/7F7V8F9ZDPwDPJsNba6On7vuuvjww89EE05Sv8U07VTp8VHLr8iW9bnpfktHj8h1jUdGXCfJMhof8vpmDl6TPqBUj1XnkelrtK2H6kltNLOoQjzqKqoiF/uu8aS0lZ/8dyzeWWGSutHFl4SP3Pp8mxWmmTOuWadJN+p7ptXIceXlK364xtuio8/+khsPpE+E0+xJON/4qqrXyzJdz5cJwAAAAD9kIEHAACAkvjAypXZIJynjjYVtP/httbo7OnJZs4YyPTRo+NPb7w5Pvn4o7H1xIlCp5rKpNpR8f4VK+K2WbPPeW9lY+OgATyJ+/fti/+6ZGmppscF6I658+KqqVPjbzc+H/f0XT9psuTksnDc+PgfK1bGZZNfmYmmu2fwvkdVDe1HSEnWqj++8ab4m43Pxf/bsWNIfeXjumnT4kOrL4vGUXXDNiYAAABAIWTgASiq4vzGLQDAhaC6ojI+fe118efPPhPf2LM77/2TYIUDLadj7thxg7ZrHDUqPn/DTfHPW7fEv27fFh09PQXOuH9J9o4kW8nbFyyMUVVV/T7vXTtlavzdpo2D9vOtF/bEOxctjsoki0mxFCnjS1H6LVXGoFRjpx1/qIOkaFPkeTTWjopfu/zKePfipfH13bvinn1743h7e979rG5ojLfOnx83TZ8RFf1k0uno6R50/1GZ/q/9fCQZfP7H8pVx28xZ8f89/3w8c+zokPobzNIJE+Only6Nq/ruzSzf0wAAAIDznAw8AAAAlEySPecXV18Wt82aFf+ybVs82XQkuvP4i/TDrW05A3heGuenly6LN8+bH/+2fVvcvW9vnOzoKHjeSQmjyxsnZ+d9y4yZUZME7gxi4fjxMa9vnrtPnxqwzaHW1lh7YH/cOnNWwfPi4jVj9Oh4//IV8bOXLo+tJ0/EhqNHY8epk9nybEfa2uJ0R2d09nRnr9X6TCYm19XFnDFjs2W4rp4yNabW1w/af3v34AE8Y6trinYsSyZMjM9ef0M2a9Y3du+KBw8djFNDuF9fUtd33DdMmx5vmjs3VjY0FmGmAAAAAMNHAA8AAAAlt6qhMbud7uiI55qb44WW03G4tTXaurvibFd3ZCororYqExNqarKBBkngwSXjx8fo6uq8xkmy8STlgd536fLYcOxoPNnUFNtOHI+dp04NGtCTZNlJynEtmzAxVjQ0xBWNk2NsTX4BC39z6215tc/lp5YszW7F9nMrV2W3YkuCJ+5+69uK3m/iy298U0n6zcfPr1yd3cotyZ6TBMAkW7Ek2a5yBfCMy/N+SGPxhAnx4csujw/1XhZbjh+P55uPZYOTXjjdEgfOtPStDwPPKQmya6yri7l9a8Wivn6SDEMr++7dwUruAQAAAJzPBPAAAAAwbJKgmOumTYvrYlpJx8lUVsaVk6dkt5d09vTEsbNn42xXV3T29kRNZVU26GRsdXX2v3CxSpP9ZlJtbcnGT4JxLp00Kbu9XHKvnuibWxJc1NV3//ZEb999WxljqmtiQt98qopZjg4AAACgzPyEEgAAgItCkpljWo4yQnAxOtnRnrPNlDLcO6MymZgmuA4AAAC4SGSit7fccwAYOdKsmdZVAABgBDnQciZnm2l1db7rAAAAAJSQX2MCAAAAKIP/s3VL1FdXx8zRo2N6/ehshqgkU9Rw23nqZM42c8eOHYaZAAAAAFy8BPAAAAAAlMHd+/fF3paW7/+5om+bXFeXDeiZ0bdd0Tg5bp4xs+TzeLzpSM4288eOK/k8AAAAAC5mSmgB5EUJLQAAoDhqXpVtJ/kmcaStLbs9dfRoPN/cHDdPn1HSORw4cyY7zmBm1NfHhJoa33UAAAAASkgGHgAAAIAyaBxVFztOnRrw/T2nT8epjo4YlwTPlMi/7ties83qhsaSjQ8AAADAi2TgAchHmiXTugoAAKQws75+0PeTbxb37d8fPzxvXknG337qZNy594Wc7V4zdarvOQAAAAAlJgMPAAAAQBksmzgxYveuQdt8aef2uGP27Kipqirq2K1dXfGZp9ZHd47AnIk1tXHV5ClFHRsAAACAcwngAQAAACiDyxsbo6qiYtAgmsNtbfFnzz8XH161umjjnu3qik+uezz2tLTkbJtk/8lUVhZtbAAAAAD6p4QWQD7SrJnWVQAAIIUJ1TVxZePkeLzpyKDt/nPvC9Hb98/PXboiaoeYiWffmZb47fXrY8fpUznbTqytjXfMm+87DgAAAMAwkIEHAAAAoEx+YuHCnAE8iW/t3RtPHzsWP7Vocdw6fUbeWXGOnj0bX929K77ct3X09KTa5+cvXRF1GT86AgAAABgOfgoDAAAAUCarJjXEtVOmxKNHcgfxHGxtjd/b8HT81aaNcd2Uqdl9540dE9Pq6mNMdXVUVlRk27V1dcWx9vY4cOZMbDt1MtYfPRrPHW8etFTXq90xe3bcNH16wccFAAAAQH4E8AAAAACU0YdXro73PbA2TnZ0pGqftLtz397s9nJJ+E4xil2tntQQv7B8ZRF6AgAAACAtATwAAAAAZTSptjY+tebq+JXHHom27u6C+ylG8M7lDY3x21euieo8S3QBAAAAMDSZyCN9MgApWFcBAIA8LR0/Pv7g6mvjk+vXRXN7e1nmcMes2fGh5SsikwTv+F4DAAAAMKxk4AEAAAA4DyydMCH+8vob4o+efSYeb2oatnHH19TEz126PG6dPmPYxgQAAADglWTgAchHmjXTugoAABSooaY2Pn3lVbH20MH4261b4kBra8nGqqmsjLfOmRs/ufCSGFNd7bsMAAAAQBnJwAMAAABwnrl52vS4Yeq0ePDwofj6C3vimebmKFZ4zfS6+njDzJnxQ7PnxMTa2iL1CgAAAMBQCOABAAAAOA9VVVRkA3mS7Xh7ezzadCQbyLP55IlsZp7ulBlzGmprY9G48bFy0qRY09AYC8eNK/HMAQAAAMiXEloAeVFCCwAAGH4Ta2rijpmzsluis6cnDre1xbH29jjV2RHt3T3R1duTDfqprqyMsZnqmFhbE1Pr6mN05lW/v+U7CwAAAMB5RwYeAAAAgBEmCdKZNXp0dgMAAABg5JOBByAfaZZM6yoAAAAAAAAAeZCBBwAAAAAAAAAAykgADwAAAAAAAAAAlJEAHgAAAAAAAAAAKCMBPAAAAAAAAAAAUEaZ3t7ecs8BYMRIs2ZaVwEAAAAAAADIhww8AAAAAAAAAABQRgJ4AAAAAAAAAACgjDKh1AtA8SRLqnUVAAAAAAAAgDzIwAMAAAAAAAAAAGUkgAcAAAAAAAAAAMpIAA8AAAAAAAAAAJSRAB4AAAAAAAAAACijTPT0lHsOACNHb4o107oKAAAAAAAAQB5k4AEAAAAAAAAAgDISwAMAAAAAAAAAAGUkgAcAAAAAAAAAAMpIAA8AAAAAAAAAAJRRJnp7yz0HgJEj55LZ18C6CgAAAAAAAEAeZOABAAAAAAAAAIAyyuTOJgFAXqyrAAAAAAAAAORBBh4AAAAAAAAAACgjATwAAAAAAAAAAFBGmehV6wUgtTRrpnUVAAAAAAAAgDzIwAMAAAAAAAAAAGWUiZApAqC4rKsAAAAAAAAApCcDDwAAAAAAAAAAlJEAHgAAAAAAAAAAKKNM9Cj1ApBab4o107oKAAAAAAAAQB5k4AEAAAAAAAAAgDLKRMgUAVBc1lUAAAAAAAAA0pOBBwAAAAAAAAAAykgADwAAAAAAAAAAlFFGpReAPKRZM62rAAAAAAAAAORBBh4AAAAAAAAAACijTPRKFQGQXoo107oKAAAAAAAAQB5k4AEAAAAAAAAAgDISwAMAAAAAAAAAAGWUSVUOBoDvSbNmWlcBAAAAAAAASE8GHgAAAAAAAAAAKKOMRBEAeZCABwAAAAAAAIAik4EHAAAAAAAAAADKSAAPAAAAAAAAAACUUaa3t6fccwAYOXoHr4/Vm21iXQUAAAAAAAAgPRl4AAAAAAAAAACgjDIxeDIJAPLR+70NAAAAAAAAAFKSgQcAAAAAAAAAAMpIAA8AAAAAAAAAAJRRJnrVegFILc2SaV0FAAAAAAAAIA8y8AAAAAAAAAAAQBll0qWTAOBFqVLwlHwWAAAAAAAAAFw4ZOABAAAAAAAAAIAyEsADAAAAAAAAAABllFHpBaDIrKsAAAAAAAAA5EEGHgAAAAAAAAAAKKNM9EoVAZBamjXTugoAAAAAAABAHmTgAQAAAAAAAACAMhLAAwAAAAAAAAAAZaSEFkBR9SqhBQAAAAAAAEBeZOABAAAAAAAAAIAykoEHIB9p1kzrKgAAAAAAAAB5kIEHAAAAAAAAAADKSAAPAAAAAAAAAACUUSZCqReA4rKuAgAAAAAAAJCeDDwAAAAAAAAAAFBGGYkiAPKQZs20rgIAAAAAAACQBxl4AAAAAAAAAACgjATwAAAAAPz/7N0HvFxVtTjgvcMlhCqE3qtgwx7kPfQJNhTLA3tD0aeCSnuKin+xN+wCvmcFsWBXsCt2RQ2JogKCNJWmlFClhiT7vzYz8cWQO3Pm3jszt3zf77c4J3fW2XsPuTk3mVmzNgAAAAAM0Ugq9noBaK7BPdN9FQAAAAAAAIAe6MADAAAAAAAAAABDNNKomwQAPXBfBQAAAAAAAKA5HXgAAAAAAAAAAGCIFPAAAAAAAAAAAMAQjaRltnoBaKw0uGe6rwIAAAAAAADQAx14AAAAAAAAAABgiEYadZMAoKXJPdN9FQAAAAAAAIAe6MADAAAAAAAAAABDpIAHAAAAAAAAAACGSAEPAAAAAAAAAAAMkQIeAAAAAAAAAAAYopFSyrDXADBlNLlluq8CAAAAAAAA0AsdeAAAAAAAAAAAYIgU8AAAAAAAAAAAwBCNNNoPBoC2LvfM+rD7KgAAAAAAAAA90IEHAAAAAAAAAACGSAcegF40uWW6rwIAAAAAAADQAx14AAAAAAAAAABgiBTwAAAAAAAAAADAENlCC6AnDe6Z7qsAAAAAAAAA9EAHHgAAAAAAAAAAGCIFPAAAAAAAAAAAMEQKeAAAAAAAAAAAYIgU8AAAAAAAAAAAwBCNpFKGvQaAqaPJPdN9FQAAAAAAAIAe6MADAAAAAAAAAABDpAMPQC+63jKLDjwAAAAAAAAA9EQHHgAAAAAAAAAAGCIFPAAAAAAAAAAAMEQKeAAAAAAAAAAAYIgU8AAAAAAAAAAAwBCNpGXLhr0GgKmjlO457qsAAAAAAAAA9EAHHgAAAAAAAAAAGCIFPAAAAAAAAAAAMEQKeAAAAAAAAAAAYIgU8AAAAAAAAAAAwBCNpFKGvQaAKaTBPdN9FQAAAAAAAIAe6MADAAAAAAAAAABDpIAHAAAAAAAAAACGyBZaAL1ocs90XwUAAAAAAACgBzrwAAAAAAAAAADAECngAQAAAAAAAACAIVLAAwAAAAAAAAAAQ6SABwAAAAAAAAAAhmgklTLsNQBML+6rAAAAAAAAAPRABx4AAAAAAAAAABgiHXgAetHknum+CgAAAAAAAEAPdOABAAAAAAAAAIAhUsADAAAAAAAAAABDNFJs9QLQXKMdtNxXAQAAAAAAAGhOBx4AAAAAAAAAABiikaRTBEAPutwz68PuqwAAAAAAAAD0QAceAAAAAAAAAAAYIgU8AAAAAAAAAAAwRAp4AAAAAAAAAABgiBTwAAAAAAAAAADAEI2kUoa9BoCpo8kt030VAAAAAAAAgB7owAMAAAAAAAAAAEOkgAcAAAAAAAAAAIbIFloAPWlwz3RfBQAAAAAAAKAHOvAAAAAAAAAAAMAQ6cAD0Ism90z3VQAAAAAAAAB6oAMPAAAAAAAAAAAMkQIeAAAAAAAAAAAYIltoAfSi6y2z2EILAAAAAAAAgJ7owAMAAAAAAAAAAEM00r2bBAA9cV8FAAAAAAAAoAc68AAAAAAAAAAAwBAp4AEAAAAAAAAAgCEasdcLQC+a3DPdVwEAAAAAAABoTgceAAAAAAAAAAAYopFUdIoAaKxRAx73VQAAAAAAAACa04EHAAAAAAAAAACGSAEPAAAAAAAAAAAM0Uij7WAAaM59FQAAAAAAAIAe6MADAAAAAAAAAABDNJLKsmGvAWDqaHLPdF8FAAAAAAAAoAc68AAAAAAAAAAAwBAp4AEAAAAAAAAAgCEaSWXYSwCYQprcM91XAQAAAAAAAOiBDjwAAAAAAAAAADBEI1pFAEw091UAAAAAAAAAmtOBBwAAAAAAAAAAhkgBDwAAAAAAAAAADNFIKrZ6AWiuwT3TfRUAAAAAAACAHujAAwAAAAAAAAAAQzSiUQRAc03ume6rAAAAAAAAAPRCBx4AAAAAAAAAABgiBTwAAAAAAAAAADBEI6ksG/YaAKaQLvtj1YfdVwEAAAAAAADogQ48AAAAAAAAAAAwRCPdmkkAsIIm90z3VQAAAAAAAAB6oAMPAAAAAAAAAAAMkQIeAAAAAAAAAAAYohF7vQD0wh5aAAAAAAAAAEwsHXgAAAAAAAAAAGCIRlLRKQJgQrmvAgAAAAAAANADHXgAAAAAAAAAAGCIFPAAAAAAAAAAAMAQjSQ7vQA01+Se6b4KAAAAAAAAQA904AEAAAAAAAAAgCEa0SoCoBda8AAAAAAAAAAwsXTgAQAAAAAAAACAIVLAAwAAAAAAAAAAQzSSltnqBZhZblm6NL39ogvSc7bYMt1rnXV7u7jrLTMSxnBffdOF56U9524YsVHP1wIAAAAAAAAwtenAA8woP712UTr83D+mS267NZ1+w3Xp1AfvnmblPNQ1nbro6nTsxX+5M/bfYqv0lrvvku42svpQ1wQAAAAAAADA4Iw0aCcBMOXdcMcd6agLzksn/f3yf37tjBtvSB++5K/p5dtu18NITe6Zze+r/1iyJL3yT3/8568/87fL0g8WXZ3ee497pX023qSHdQEAAAAAAAAwVenAA0x737jqivTq885NVy1efJfH3vHnC9LjN9kkbbfmWkNYWUpvvvD8dPntt/3L165YfHt67pm/S/tusll61y73SBvPXmMoawMAAAAAAABgMBTwANNWKSW98Ow/pK9fdeWoObcuW5YOO/eP6ZQHPDjlAW+l9evrr0ufvPzSUR8/5aor0s+uuyadeJ/7pYfN3XCAKwMAAAAAAABgkEZSsYUWMD3Vcpxt56zZNe8X111759ZVz9tiq+6DNtpBq3vSbUuXpkPPObvrcEuWLUs71u5A7tUAAAAAAAAA05YOPMC0duT2O6ZvXX1V+vOtt3TMe8OF56fHbLhx2myNwWxX9a6/XJQu6rKm6k077Zy2mDNnAEk6+EsAACAASURBVCsCAAAAAAAAYFhGGnWTAJii5sxaLR1zj3ulJ/7uNx3zblyyJL3yT+ekk+77gPFP2uW+euY/bkwfuvTirsPssf4G6YDNt2rW9QcAAAAAAACAKUsHHmDa22P9uekFW2yVPvm3yzrmffeaq9PJV16R9tt0s76tpW6JdfCf/piWdtkSa86sWemYXe6dcs59WwsAAAAAAAAAk4MCHmBGeNOOO6dTr7k6XX777R3zXnPBn9KeczdMG6y+el/Wceylf01n3/SPrnmv3X6ntMNaa/VlDQAAAAAAAABMLiOpSxcIgOlg3dVWS+/b+Z7pmWf9vmPeojsWp9decG76yD13XXVCk3vmKDnn33xzevdfLup6+f3XXS+9fKttms0FAAAAAAAAwJSnAw8wYzxmw43TUzfZLH3lqis65n3pyisib/P0qA03mrC5SynpsPPOSYu7FOWM5JyO2+VeaZatswAAAAAAAABmjJGUdHgAZo6j775z+sl116Rr7rijY95/n39O+vW8f0vrjKxc59jknnnXnI9ffmk6/cbru155+DbbpXuvs07DeQAAAAAAAACYDnTgAWaUuavPTkfvtEt68blnd8y7/Pbb05v/fGF6z873GPecl952a3rrXy7smrfzWmulI7bdftzzAQAAAAAAADC1KOABZpynbLpZ+upVV6TvXbOoY94Jf7ssPXmTTdO/rb/BuOb77/P+lG5eurRjTt0w67hd7p1mz5o1rrkAAAAAAAAAmHpG0jLbtAAzz3t32iX96vrr0o0dCmvq3fGw885Nv3jQQ9IaywtrmtwyV7ivfv7Kv6cfX3dN10sO3HLrNG/d9ZJ7MgAAAAAAAMDMowMPMCNtscac9KYd7p5eccGfOuZdeOst6V0X/zm9Yfudep7j6sWL0+suOr9r3jZz5qTXbbdjz+MDAAAAAAAAMD2MNGsnATD9PH+zze/cSuuXN1zfMe+4Sy9J+228Sdp1nXVTs3tmK+dVF/4pXb9kSdfsY+5+j7T2arMajg0AAAAAAADAdKMDDzBj5ZzTsTvfIz30twvSrcuWjZq3NJV08Hnnph8/cF7jsb+96Or0jYhunr3p5unhG8xtPC4AAAAAAAAA048CHmBG237NtdKR226f3viXizrmnXXzTenYSy9O6410v23esOSOdMSF53XN23T27PT2HXvfmgsAAAAAAACA6WWk2LEFmOFetuU26eSrr0q/v+kfHfPeffFf0/M336LreEdddGG6cvHirnnv3nHntN5qqyf3YQAAAAAAAICZTQceYMablXM6bud7pr1+tzAt6VBNc3tZlo7/2+Udx7rujjvSSVf+veucT9po4/SEjTbpea0AAAAAAAAATD8jWj8ApHSvtdZOh221TXrfpRd3zFuaOt8zlzWYa/2RkfSuHXZO7r8AAAAAAAAAVDrwALQdsfV26ZuLrk7n33pLX+d5+/Y7pU1mz+7rHAAAAAAAAABMHQp4ANpmz5qVjr37PdLjzjyjS5+dsdtr/Q3SMzfdvE+jAwAAAAAAADAVjaS+vU0NMPXMW2+99JIttkwf/dvlEz722rNWSx/YaZfkvgsAAAAAAADAinTgAVjJ67bdIX3nmmvSpbffNqHjvn677dPWc+ZM6JgAAAAAAAAATH0jGkEA/Ks7O+XsuHN66jlnTtiYD1l3vfSizbbUfAcAAAAAAACAu9CBB2AV9tpgbnr2Jpulz111xbjHmp1z+uBOu6QcRwAAAAAAAABYmQIegFG8bfsd04+uuzZdecficY3z6q23SzuvtfYErQoAAAAAAACA6WYklWXDXgPApHS31VZL79phx3TAeeeOeYz7rLV2OmTLrZJ7LQAAAAAAAACj0YEHoIMnbrhxeuLcq9M3r13U87WrRRy30y5pxNZZAAAAAAAAAHQwksqwlwAwub17+53Sz2+4Pt2wdElP1x28xdbpvmuvk9xnAQAAAAAAAOhEBx6ALjaZPTu9bbsd0iEXnd/4mh3nrJlevfW2fVwVAAAAAAAAANOFAh6ABp618abpa4uuTj+54bquuXXDrGN33DnNmTWr/wsDAAAAAAAAYMobScXeLgDd1KKcD+ywU9rjD79NNy9b1jH3gE03T7uvu15yfwUAAAAAAACgCR14ABraeo056aitt0uvvfjPo+ZsOXt2euM22w1uUQAAAAAAAABMeSMp6RAB0NSLN9s8fe2aq9PCm/6xysfft/1Oad3VVkvurQAAAAAAAAA0pQMPQA9yzunYHe+eHn7m79LilbbIetpGG6dHbzB3SCsDAAAAAAAAYKpSwAPQo53XXCsdseXW6R2XXfLPr200snp653Y7DHFVAAAAAAAAAExVI3Z5AejdYVtsnU65ZlE659Zb7vz10dvtkDZYbXU7ZwEAAAAAAADQMx14AMZgJOd03A53T4/+4x/SY9afm/bbcONhLwkAAAAAAACAKWokFe0iAMbi/muvk1671Tbp2RttmtxLAQAAAAAAABgrHXgAxuEVW2w97CUAAAAAAAAAMMUp4AEAAAAAAAAAgCGyhRYAAAAAAAAAAAyRDjwAAAAAAAAAADBEOvAAAAAAAAAAAMAQ6cADAAAAAAAAAABDpIAHAAAAAAAAAACGaCQlW2gBAAAAAAAAAMCw6MADAAAAAAAAAABDNKIBDwAAAAAAAAAADI8OPAAAAAAAAAAAMEQKeAAAAAAAAAAAYIhGUrGHFgAAAAAAAAAADIsOPAAAAAAAADPM/Jv+kR6y9jop5zzspQAAkBTwAAAAAAAAzCi/+seN6akX/il9Yadd0n+se7dhLwcAgKSABwAAAAAAYMY4+5ab07MvOj/dXkr6yFVXKOABAJgkRub+dv5ew14EAAAAAAAA/ZVz3jEOp0VsVn/9/RuuX7bhGaffo5RywXBXBgCADjwAAAAAAADTXM65Fu18P7WLd9pmRRwScehQFgUAwD8p4AEAAAAAAJjGcs51n6zvRey4iocPiMdfX0q5YcDLAgBgBQp4AAAAAAAApqmc85w4fD3ifqOkrBvxwogPDGxRAADchQIeAJiGcs6rl1LuGPY6AAAAABienPNqcfh8xMO7pB4cuceWUpYOYFkAAKyCAh4AmGZyztvF4ZNx3KeUcuuQlwMAAADAEOQQh49G7NsgfYeIJ0ac0tdFAQAwKgU8ADD9HByxZ8QXcs5PKaUsGfJ6AAAAABi8d0T8Vw/5hyUFPAAAQ6OABwCmkZzzOun/Xph5UsTH42svLGGIywIAAABggHLO/x2HI3u8bM+47n6llD/0Y00AAHSmgAcAppfnR6y/wq8PiLg64tVDWQ0AAAAAA5Vz3j8O7xvj5bULzwsncDkAADSkgAcApon2vuaHrOKhV8VDV5VS3jvoNQEAAAAwODnnfeJwfD0d4xDPijGOLKVcNYHLAgCgAQU8ADB9PDZil1Eee3fOeVEp5cQBrgcAAACAAck5/3scvhyx+jiGmRNxYMRbJ2RRAAA0poAHAKaPwzo8Vj919fGc8zWllG8OakEAAAAA9F/O+d5xqK/5rDUBw700xntXKWXxBIwFAEBDCngAYBrIOd8zDo/pklZ/7n8xch9TSjltAMsCAAAAoM9yztvG4fsRcydoyM0jnhZx0gSNBwBAAwp4AGB6ODQ129t8zYhv5pz/o5RyVp/XBAAAAEAf5Zw3Tq3inS0neOjDkwIeAICBUsADAFNczrl+umr/Hi5ZP+J7cd1DSyl/6dOyAAAAAOijnPM6cfh2xC59GP7BMf6/l1J+1YexAQBYBQU8ADD1vShi7R6v2SLi++0inqv6sCYAAAAA+iTnPDsOX4uY18dpDotQwAMAMCAKeABgCss515/lLx/j5XeP+G6MsVcp5cYJXBYAAAAAfZJznhWHz0Q8us9TPTnm2qaUckmf5wEAICngAYCpbt+IbcZx/QMjTs4571NKuX2C1gQAAABA/xwX8fQBzFPfQ3pZxJEDmAsAYMZTwAMAU9thEzDGIyJOyjk/o5SydALGAwAAAKAPcs5vSK2imibq9le7pfG9F/TimPMtpZRbxjEGAAANKOABgCkq5/zgODx0goZ7SsT/RBw0QeMBAAAAMIFyzi+Nw5sbpp8Z8YqI+V3yFkVs1OHxuRH7R3y04bwAAIyRAh4AmLoOneDxDsw5X11Kef0EjwsAAADAOOScnxaHDzVM/0vEYyP2aJD7mojju+QcGvN/rISG8wMAMAYKeABgCso5bxaHZ/Rh6KNi7KtKKcf1YWwAAAAAepRzflQcPhMxq0H6VRF7l1L+Htft2iX3pogTU+tDYvfrkHeviEdHnNpgfgAAxkgBDwBMTbVl8uw+jf3BnPOiUsrn+zQ+AAAAAA20t1D/WsQaDdJvjHhcKeWC9q+7FfCcHbnLYo5j4vyELrmHJQU8AAB9pYAHAKaYnHN9webAPk5RP811YsxzbSnl+32cBwAAAIBR5JzvHodvR6zbIP32iH1LKWes8LX7drnmrPaxfojr6IhNOuQ+Ntazc4x/foO1AAAwBgp4AGDqeWbEpn2eo3b3+WrO+ZGllNP7PBcAAAAAK8g5b5FaHW86FdUstzTiOaWUn6xw/Tpx2L7LdWfW/8R1t0X+R+P09R1y6we+6lZbBzdYDwAAY6CABwCmnsPGef3iiGURc7rkrR3x7Zzzw0op545zTgAAAAAayDlvEIfvRWzX8JKXlVK+utLX7p9aRTednLXC+YcjXpM6b9n+/FjbUTHX9Q3XBQBADxTwAMAUknP+jzg8YJzD1J//z4/4ZOr+d4ENI74f8+5RSrl0nPMCAAAA0EHOec04fCNi14aXvL6U8rFVfL3b60cltTvw3PmLUv4ec38pTp/b4Zra1eeFEe9vuDYAAHqggAcAppYm3Xc+F/HsDo/XT19dGHFgxCcicpfxtk6tIp7aieeaRqsEAAAAoCc55/qeTS2ieWjDS44rpbxtlMce2OXav8S11630tWNS5wKe6uBY5zFx7dJGKwQAoDEFPAAwReSct4vDf3ZJuza12h13KuCpdi2lfDzG3DjOj24w/T1TazutR8Z1NzfIBwAAAKChHFLrg1ZPaHjJ5yMO7/B4twKeM1b+QinlN7GMX8bpHh2u2z7iSREnd10hAAA9UcADAFPHwRGrdcn5RCnlspzzZXG+VYe8+9b/RO67IneTOH1Fg/kfEvHVyH9SXLe40YoBAAAAaOLdqbXleRPfjziglLJsVQ+2t+G6V5cx7lLA01a78HQq4Klqh2gFPAAAE0wBDwBMATnnusf4f3VJWxLxP+3zuod5pwKeFfdRPyKiduLZv8FS9o44Mdbz3NFeJAIAAACguZzzq1Lr9ZkmTo94SpcPV9XXfbq9/zNaAU8tzLkkYpsO1z481vyAWMPvuswBAEAPFPAAwNTwvIj1u+ScXEq5pH1+VsQ+HXL/WcAT15Sccy0Omhvx+AZreVbE1an1aSsAAAAAxmfNhnnnRjy+wfbmD2ow1ioLeGLsJTnn+gGxd3W5/tCIFzSYBwCAhhTwAMAk194D/dAGqcescH5Wl9y5Mew2ywt+4nhH/PrpcfqDiH9vMNehkX91XPe2BrkAAAAAjKKU8pac86I4PS5i1ihpl0bsHbnXNBjy37o8fmmMc3WHxz8R8YaItTvkPCvWfGSMc2WD9QAA0IACHgCY/B4bsUuXnN+UUn65wq/PbDDuA1OrJfKd4vpbcs5PiNOfR9ynwfVvjfyr4rqPNcgFAAAAYBSllP+tH5aK089ErLHSw7VopxbvXNpwuG4fzlrYZS3XxlrqOg7qkFbXeGDEWxquCQCALhTwAMDk12SrqmNX+nVtqXxr6tyCuRbwnLLiF0op1+Wca8FQLQbatsG89cWla+K6rzbIBQAAAGAUpZQv55yvi9OvRazb/nLdLqtum3VukzHi+k3isGOXtF83GKq+1lQLdHKHnJfGfEfH2hY3WRsAAJ0p4AGASSznfM84PKZL2hURX1zxC+39yus2Wrt1uO6Bq/piXHt5XFvnPC1i4y5zrxZxUuRfG9f9pEsuAAAAAB2UUn6Yc35EnH4nYv2Ip8bXTu9hiG7bZ1W/arCOc2Mdp8bp3h3SNot4Rmp1DQIAYJwU8ADA5HZo6vxJp+rDo3zS6Yw0hgKeKsY7P+e8T5z+OP3fJ75GU1smnxL5e8V1Z3TJBQAAAKCDUspvcs4Pi9P7xPn3ery82/ZZt6fWa0ZN1C48nQp4qvralQIeAIAJoIAHACapnPMGcdi/S1p90eWjozzW7cWYzWOOzUspf1/Vg+0Xi54cp99Kd917fWXrRXw38h8a113QJRcAAACADkop58XhvDFc2q0Dzxkx9m0Nx/puew27dMh5cPv1oNMajgkAwCgU8ADA5PWiiLW75Hy+lHLlKI81+TRV7cLz7dEebLdtrkVEX4iY1WWsusf6+yOe2GBeAAAAACZQznnNOMzrkvbrpuOVEGMeF6cf6pJ6WGptxQ4AwDgo4AGASSjnXH9GH9wg9dgOj50dUbfWmt0hp26xNWoBT1VK+XKsZ6M4/d8ua6kvAD2/Sw4AAAAA/bFHxJwuOb/qccxPRbwtYv1RHq+dmH/c45gAAKyCAh4AmJz2jdimS87PSym/G+3BeOz2nHMt4nlghzG67Yu+fKwPx1gbx+mbR0mpLZWfFnk3NxkPAAAAgAn3yC6Pl4hf9DJgKeWmnPPxcfrKlcb5aWp9sOwbkbOslzEBAFg1BTwAMDkd1iDnmAY581PnAp7dcs6rlVKWdhsoct4SuXWbrJev9NBnI14Yj9/RYD0AAAAA9Mejujx+VinlqjGMW7fQOjy1Oj2fFHFsjHPWGMYBAKADBTwAMMnknB8Uh4d2SftrxNcbDFfbIr+sw+PrRdwn4g+NFpfSoRF1O61ntH9di4he4ZNWAAAAAMOTc56bOn+Iq/rhWMYupfw1xn9WnP4kzheNZQwAALpTwAMAk0+T7jsfatI1J/y6Qc6/pYYFPLVQJ+f8vNTa97xu4fWOJtcBAAAA0Fd7RczqkvOjsQ5eSvnyWK8FAKAZBTwAMInknDeLw9O7pN0UcXyT8Uopf44xr4jTzTqk1QKejzRb4Z1jLo4xH9+wgAgAAACA/nt0l8fr9lc/H8RCAAAYGwU8ADC5HBSxRpecT5dSru9hzNqFZ78Oj+/Rw1h3UrwDAAAAMDnkEIcndEk7vZRy0yDWAwDA2CjgAYDJ5RFdHi8Rx/Y4ZrcCnh1zztuWUi7ucVwAAAAAhu8hEVt2yfnhIBYCAMDYKeABgMllz4h9Ig6LeGREXunx75VSzutxzF82yKlzndDjuAAAAAAM374Ncr7T91UAADAuCngAYBIppSyLw7dq5JzvFcdDIp4XsVY75ZgxDLsw4h8R63bIeVRSwAMAAAAwFXXqvFxdEvHbQSwEAICxU8ADAJNUKeWcOLw053xUHF+cWttrnTqGce6IMX6WOu+F/si6X3rklrGtFgAAAIBByznfOw47d0k7xWs+AACTnwIeAJjkSinXxOHodoxV3ee8UwHPJhG7Rpw5jjkAAAAAGKxu3Xeqk/u+CgAAxk0BDwDMDD9qkFO30VLAAwAAADB1PL3L44siThvEQgAAGB8FPAAwM/wx4u8Rm3fIeVzE+wezHAAAAADGI+d8/9TqqNzJN0spSwaxHgAAxkcBDwDMAHWf85zzj+P0OR3SHh45cyP12kGtCwAAAIAx279Bztf6vgoAACaEAh4AmDlOTZ0LeFaPeELEpwezHAAAAADGIuc8O3V+naeq22edOoDlAAAwARTwAMDM8a2I2jK508///ZICHgAAAIDJbt+ITbvkfLGUsngQiwEAYPwU8ADADFG3xso5/yxOH9kh7TGRs1bk3jKodQEAAADQs5c0yPlM31cBAMCEUcADADPLyalzAc9aEXu38wAAAACYZHLO94zDI7qknVNKOX0Q6wEAYGIo4AGAmeXrEcdF5A45T0kKeAAAAAAmq8NT59d2qo8NYiEAAEwcBTwAMIOUUi7LOS+I04d0SNs3ctaJ3JsGtS4AAAAAuss5bxSH/buk3Rrx6QEsBwCACaSABwBmntpdp1MBz9oR+yX7pAMAAABMNodErNkl54ullOsGsRgAACaOAh4AmHm+HPHO1LnV8vOTAh4AAACASSPnfLc4HNog9YP9XgsAABNPAQ8AzDCllD/nnH8Vp3t0SHtE5OwYuRcNal0AAAAAdHRwxPpdcn5cSvnDIBYDAMDEUsADADPTZ1PnAp7anefFEUcOZjkAAAAAjCbnXAt3XtEg9f39XgsAAP2hgAcAZqYvRXwgYk6HnBfknN9YSrl9QGsCAAAAYNXqh6zmdsn5fcR3BrAWAAD6QAEPAMxApZRrc85fidPndkjbJOJZEScOZFEAAAAA3EXOecs4HNIg9e0l9Hs9AAD0hwIeAJi5PpY6F/BUhycFPAAAAADD9J6Itbrk/DHiawNYCwAAfaKABwBmqFLKL3LO9cWde3dIu1/kPCpyfziodQEAAADQknN+eBye2SD19aWUZf1eDwAA/aOABwBmtuMiPtIl53URCngAAAAABijnPDsOH6qnXVJ/VUo5eQBLAgCgjxTwAMDM9umIt0Vs1CFnz5zzw2rHngGtCQAAAICUXhtxnwZ5r+n3QgAA6D8FPAAwg5VSbs05fzS1uux08saIRw1gSQAAAAAzXs551zj8vwapXyylnNbv9QAA0H8KeACAuo3WKyLW7JDzyJzzo0spPxjQmgAAAABmpJzzGqnVNXl2l9SbI47o/4oAABgEBTwAMMOVUq7MOX88Tg/tknp05P0w8ssg1gUAAAAwQx0dcf8GeW8vpVzW78UAADAYCngAgOo9EQdGrNEh54ERz434zEBWBAAAADDD5Jz3icNhDVLPinhfn5cDAMAAKeABAGoXnsvaXXgO7pL6rsj7euTfOIh1AQAAAMwUOecdU+uDU7lL6pKIF5RSFvd/VQAADIoCHgBgubdGPD9i3Q45m0e8IdlfHQAAAGDC5JzXicMpEXMbpL+vlPLbPi8JAIABU8ADANyplHJVzrm2Xn5Tl9TDIu/zXigCAAAAGL+c82qp1XnnPg3Sfx/xxv6uCACAYVDAAwCsqBbwvDhiyw459e8PJ+Sc52nVDAAAADBux0Ts2yDvpohnllJu7/N6AAAYAgU8AMA/lVJuyjm/Kk4/1yX1vhGvSz7xBQAAADBmOefXxuHlDdMPKaWc18/1AAAwPAp4AICVfSHioIj/6JL3upzzD0spvxjAmgAAAACmlZzzYXF4R8P0j5VSTuzjcgAAGDIFPADAvygh51w/+fXbiNkdUu/cnz1yHxCXXDeY1QEAAABMfTnnQ+PwgYbpv444pI/LAQBgElDAAwDcRSnl7Jxz/QTYm7qkbhtxYuTuF9cs6//KAAAAAKa2nPOr43B0PW2QfnnEU0opi/u7KgAAhk0BDwAwmndGPCVi1y55T4p4fcSb+74iAAAAgCkqhzi8J+KVDS+5IWKfUsrf+7cqAAAmCwU8AMAq1U925ZwPSK02zZ220qreELl/iGtO6f/KAAAAAKaWnPOcOBwf8eyGl9wesW8p5cz+rQoAgMlEAQ8AMKpSyhk559fG6fu6pM6K+GzkPiKuWTCApQEAAABMCTnnLeJwcsRuDS9ZEvHcUspP+7YoAAAmHQU8AEA3H4h4VMTjuuStHfGtnPO/l1Iu7P+yAAAAACa3nPMecfhSxBYNL1ka8bxSylf6tyoAACYjBTwAQEcltLfS+k3E1l3SN444NfL3jMsu6fviAAAAACahnHPtVnxkxJtT8/diavHOAaWUz/dtYQAATFoKeACArkopV+Wcnxynv4iY0yV9+4gft4t4Luv/6gAAAAAmj5zzVnE4MeKRPVy2OGL/UsqX+rIoAAAmPQU8AEAjpZTf5JwPSq0XoLrZMeInkf+ouO7i/q4MAAAAYPhyiMN/Rbw34m49XHpTxJNLKT/oy8IAAJgSFPAAAI2VUj6Vc75nnL6mQfpOEadF/t5x3Tl9XhoAAADA0OScd4jD/0bs3eOlV0Y8qZSyYOJXBQDAVKKABwDo1WsjtojYv0FubRn9i5zzE0spv+rvsgAAAAAGK+e8dhyOjDgidd92fGW/i9i3lHLJhC8MAIApRwEPANCTEnLOL4rTzSIe3eCSuRE/jmsOrB18+rs6AABgJth93m7bx+GEUR6+fv7CBfsNcj3AzJNznhWHZ0e8M7U+wNSrr0QcUEq5eUIXBgDAlKWABwDoWSllcc65viD+7YiHN7hkjYgT45r7xPHIuH5pXxcIwLS0+7zd6qeb7x1Rf55sG7F1xAap9Unn2RG3RdwScVXE5RF/jjgj4oL5CxeUYay5F/H8Vo/DAyPun1pbUdbnt27EmhH1Z+c/Iq6I+GvE7yMWxPO6fiiLHYN4fvX36iERu0ZsF7F5aj23+nt3R8R1qfX7dmFq/b6dEc9vyVAWOwbtYoIHpdb3Z/292yS1vjfrm3v1e7N+X9ZP15+XWr93Fw5pqTBdPC5iz1Ee+2qnC+PP65PisEOX8RfFn9PPjmFdwDSXQxz+M+KtqfVzv1eLU6u78Qfqh6Qmcm0AAExtCngAgDGpnxDLOT8+Tr8T8R8NL6vtpHeL654T11/Wv9UBMF20iyKelVpv1O6exvbv2GtjnO/F8RsRX5+/cMFtE7jEcYl11efz2IjnRewdsV4Ply+N60+P4xcjPhvP69o+LHFcYn21E1/9ZPozUu+/fzfG9d+P40kR356MxTyxvlpQdkDEvqlVdNXLtRfH4eSIE+O5/WHiVwfT3t4dHju1y7UvjnhCl5yzIxTwAP/U7rhTf+a/JmK3MQ5TC8yfVUpZMGELAwBg2lDAAwCM2QpFPN9Mo3/6dWW12Of3cd0L4/pv9G1xAExpu8/b7TGp9ebIXhF5nMMtLyKpsSjGPj6O75u/cMHV4xx3zGIN9Q2g/SOOSj0WfqxgtYh/b8fRMebH4vi2eF6LJmaVY9futnNkAEnHdwAAIABJREFUxMsi1hnjMLWY6WntuDjGfHscT4jnN/ROfrGW+8XhLRFPTGP//qxdpA6vEeP9OI5HxXP79QQtEaa1dseyvTqkfH9QawGmv5xz7Spc/95WP5S0yziG+kzEIaWUGyZkYQAATDsKeACAcSml3JRzrl0RPhexX8PLNow4Ja6rb6Ae4cUrAJZrdzT5cMTD+jTFRqlVGHRQzPXO1CrkGWhnl5j3HnH4ZGp1pJkodSuqwyKeF+MfHs/p0xM4dk9i/qfH4bjU2kJqotRil1qg9NIY/4B4fmdO4NiNxdx1S6z6fXNIahVQTZRHRPwyxj8hjq+M5+fvRtBZLVxcd5TH/hR/hi4e5GKA6SnnXLfaqx27XpjG9/ea2oH4oFLKtydkYQAATFsKeACAcSul3JZzrp+O/2jEfzW8rH5a/UURe8e1L4kxvte3BQIw6e0+b7f6c+HVqdXVZPYAprxbxNERT4q5nzN/4YK/DmDO5cUttYB1rF1puqmdbz4V8zw6ji+J53Vrn+a5i/Z2YLVw56A+TvOAiNNjrpfHczuhj/PcRcxZi4hOibh/n6aofwbq36MeHnPtF8/v7D7NA9NBp+2zdN8BxiznXIui6xZ7tWindoScNY7hlkV8IuLVPrgEAEATCngAgAlRSlmac66fTKv7ub81NX+Ra+uI78a1X4rjq2KcS/q1RgAmp93n7VbfKKlbCjxlCNPXLg61IOQ/5y9cML+fE8UctUPO+9P43ghq6rkR28WcTxhEN5f27+FXIx7X77lC7YJzfMy5TTy3Nw1gvvr87pNaRQFbDGC6uqXaaTHnE+P5/WIA88FUpIAHmDA55/p3sz0jnpNafx+92wQMe3pqbZe1cALGAgBghlDAAwBMmBLi8I6c81lxPCmN3tZ+VWpHgifEtXVbivfWrj79WCMAk0u78OPrEY8e4jLqlgg/irXsPX/hgtP6MUHtGBOHD/Zj7A4eGvGd2o0nntct/Zokxq8dk74W8dh+zTGKN8bcS+K5va2fk8QcO8fhhxGb9nOeldQ3Duvv3SPj+S0Y4Lww6cWfi3rPHq0TVv03xM8GuBxgiso514LgR0X8Z8QT08T9nP97xP+L+FT7NRIAAGhMAQ8AMOFKKd/MOdeOBvWT+Dv3cOlaqdW958C4vh4/GWPd0Y81AjB8u8/brX7a+XNpbMU7t0ecG1E7t90YsSS1OrNsFnGv1CrK6UX9GfStWNPD5i9ccNYY1jOqGLN2pTmmx8vqm9B1C6W/RNycWltubRWxa8TaPYxTfx5/MuIZPc7fi2NT78U7iyLOjLgiov6sXz/i7hG7RKzWwzhvif+/F8bv2Rd6nL+RGLtuSfat1NubevXNuotS6/vzutTquLRxRO3is2UP49Tf82/GGh4Uz++yHq6D6a7+zBitk9lp/SxYBKa2nPP2qXUPqVE7efXyoaNuro14T8SxpRT3IQAAxkQBDwDQF6WUs3POD4rT/43Yv8fL6xuUH404IsZ4Uxy/WLfomuAlAjB8R0Xs20N+3QqqbrX15Yj58xcuWDxa4u7zdqvFIPtF1O0dd2o4fu16cnJc++AY+/oe1jWqGKv+TKtd6ZoWpdROL7Ug5oexhltXMV7tdlPfdHpZam1XlRuM+fS47icx3kcarqGxGPd5cTiwYXp9PrWY6PiI38V67vKp9Bhvozg8LeK/U6ugp5v6/D8e1y2M8S5quI5enNBwHVUtJqtdlr4Ua7l8VQntrbieH3FQahXodFML0T4X1+0ZYy5ruA6Y7mbE9lnt7iBL4t9BS4a9Fpiq4s9R3fpyj9TaHqt22+nlA0ZN1b+fHpdanYT7vm0pAADTmwIeAKBvSik3xeF5Oef6ZuT/pGZvVK2ovmFW3/R8W4zx/jie4JNsANPD7vN2q9ufHNUwvXZoqZ9oPnr+wgX/aHJB5F0Qh3fHPO9NrULSev3GDS7dMeJDEc9tuLZRxdy1uKQWrGzQIL0WfLw41v3dTkntoqVv16hFHXH8RGqtuZv3Rv534vpLGuQ2EuNtnVrFRk38IOIlMf9fOyXF47Uzz4dj7I+lVhHPWyLW7DJ2/ftF/f+wV8O1NBJrOCA1KzCrRcZHR7x9VUVXK4rHa1elV7W/L+v32VMbjP+wiINT8//XMG2176uP6ZAybQp4whsjXh3/Dqpd5mpnj0Xt44px3SiPXa/wh5km/qzU9zpqF8bdU6top24lukMfp6xdBGuHxQ8r3AEAYKIo4AEA+q6U8umc88/j9OOp9am3XtU21/UTbW+IcWpnno/HmBP2BiQAg9V+A7Z2g1m9QXotbHny/IULFoxlrnbXkk/FnN+L41dS682cbp4T+SfEtT8ey5wreGZq9nPvjIjHx3xX9DJ45P+0dguK0y+l7tuQ1W23apHJs3uZo4taXHu3Bnn1za1Xxnobd9Nr59aio5/F8esRm3e5ZM/IfWpc95Wmc3QSY81NraKvbmrBztNi3m/3Mn7kX1mvi3kOj2Mt5unWoelNkXtSXHdNL/PANFSLP0fb0u5vqbX14HRR70N1q7D129FLIcKy+HdTLShYXuDzz8Ke9K+FP3d5zAcmmAri+7sW994j4gERtfPvAyPul7oX/U6Eep+pr098Ov683DaA+QAAmEEU8AAAA1FK+WvOuX5a9r9S642qJm/4rax2TqjdGo6Msb6VWttsnRpj21ICYGp5QsRDGuRdHPHw+QsXXDzeCWvBxO7zdqtFLrUYpFP3huXeHvFvY50v5lojDu9qkHpOXc9YCzPqVl8xV/3/+Y3UeVuZ6pmRe2xcM38sc60oxqmFUE26x3w45jt8rPPEtQvbnYZqIfBob9ovVzsufaPT1mo9eF3ERl1yaneLp3TrmtRJXPvBWHPtKlWLnDtth1a7ONVuHIeOdS6YJjrdv09d1dZ8U9jccVxbC382aEdPHUji31m1IGHlgp/l5zes9Ot/eVwxAxMtvh9rAXLtzLtLanXXuU87avfBptuTToT6vV2LhD8a3+enDXBeAABmGAU8AMDAlBCHT+Scv5Nab2o+J3V+s2o09e8w+7bjshjvc3E8KYY/c8IWC0A/vbZBTt2G8XETUbyzXIx12+7zdntynP46Ytcu6bvXwpHa5WaM09WC1a275NRtUfYbb1eVWrASa31KPU2tN7VGU3/m1sKUJ45nvrY3NcipRTfjLjiJ53d+PL/6M79245ndIbV27Kt/t/jkeOaLuWq3n5c2SH3teIp3losxjo85t0vdt5R7ceS9o9dOTTDNdCpUnE7bZ1XjKeAZjzkRW7SjJ6so/lk5bmgfb2zHvzyuAGjmie+Z+neTWqC73QpRf57v3I76M3ksrxlMlNol8bMRn4nvz0VDXAcAADOEAh4AYOBKKbW9/f7t7bBq6+n7j2O4rSJeXSPGOyuOX4z4eswxndrnA0wbu8/brRaYNOls8+r5CxecO9Hzx5g3xxrq1la/S52LQaoDIn7a6xwxfv1E+CsbpB5Vi1N6HX9V2s+rdsSpbzSt1SH18ZF378j/41jniuvrNhWP7JJW34R9YcyzZKzzrKh2DYp568/7D3ZJPSLyThxnF46Xp+5bcNQisPePY46V1e46e0Ts1SGnvql+SGoVYcGME3+210mtPyerUjty/nCAyxmEYRXwjMeYi3+qdgHQygU+N64UtWvZTav4+vK4yTZgk0P8ftat3zZJrU66W6bW98Xm6f++R+q/5Wux8yC2verFn1OraOdz8b103rAXAwDAzKKABwAYmtp6Ouf84Dh9Xmq9cbXtOIfctR1vi3EvjOMpqbVVyvyYa0LeQARg3J7bIKcWYX6sXwuYv3DBObvP2+3DcXpYl9T9Iu9FYyhC2Sd137Kk/pz6SI/jdhTrPC/W+844fWuHtPop9toV58BxTHVIg5y6ddZF45hjVWrR7/4RD+qQU7fXqFvsjKkTR3vrs5c0SK0FZhO2hWcdK+Y+KLW+91fvkHpQ5L0l8m+fqLlhCqkFbqMVXv4m/lxMt+4YGw57AUNQC4A2a8eYxb8F70itQp8aN6dWwc/yuKUdy399c4fH6vltK8dM+bdl/H+sW7Gt04712rH8fG477rbCed2yrRbrbNKOboXSk8nvU+u1g1Pi9/f3w14MAAAzlwIeAGCoSilL4/DJ9jZY9c3E/5daLbTHa6eII9pxY4z/0zj+KOLUmPNPEzA+AGOzT4Oc989fuGBpn9dRu6fUQpRZHXLqG1S128yCHsd+QZP54zne0eO4TdQONa9IrTfRRvP03eftdljdUqzXwdsdMJ7WJa2+sTmR3Wnu1C5yeXOcfqNLai0MHutWOo9PrTcfO/lVrOW0MY4/qvZWYSelVuen0dQ3SJ8Q8dWJnh+mgE7bZ506sFUMzlTswDNZ1ELI5UUlEy7+bVl/zt2lsGeFuDWi/oxf3I4lK8Wqvr50ha+NZlk7RlNf65/dPq7WPl/+65FRfl0LV9dOre59K8byrw1z+6p+qt2afhrxg4hvlVL+OtTVAABAmwIeAGBSKKXUT5Ifm3M+Po4vTq03H7eeoOHrG7BPakd9wbVu4VXfePtlxK8ifj9TPkUJTcWfk/pvhbkrxEbpXz9dW4/fjz873d5Ih3/afd5udduEXbuk/f/27gPekars4/i5SGcpu/TeRDq+CAlBllc6oqAIiChKERuiKCI2pIiggIIiAoqAgCD1BRQQAalSQrJ0pCxtKS7L0nbZZZd+3//DTCB7uZk5k8xMJrm/7+fzfCZ7c+acM8kkuXvnyXPswtcFWc+lWq89qfnYZ8DYmKYVlyCBR33achFxSUr2bf+zfftMQsc13ZaQ0s39IprZHC0J5MI2hvi0Cy7qRblc83i6jb59XK54XLFiRJvt9RjMrzlMa6P/XT3aZFYdygVVhvaIaWNVrEjgwUi0VcR97SbtFZJ+D2skVaCY7PfkRmUa9AZLqrLf5651wXJ7Nf4GAAAAgCIigQcAABTK4OCgXdT87cDAwAkuuIhmFXTWTHmYpRQ7h2Gma7w7tB2nuD3cPqK5pLY0BtAtOrdtKYJG4s1CbtaknNGudZLO/C7+G7e2tAAJPEii7NHmRktCyXwmgRtcfALPBxP2+XEXfJs9ypU6xpcT9puEVbWLSuAxVkWn3QSeOJklYIVVeM7VzR9HNLOKAZZEdV6SvtWvvV9GVfgwVh3hkiT9JqHju0PzsEqBq0U028YqIeX4OgG6Tue8LUu4Sou7pyqqOU4nD1aNxd6PhkugHvp7m/1+x994gVk964Iv7DS+tHOH/n//enenBAAAAMTjP3cAAKCQBgcHreT46QMDA2dou7kLlteyi4ZzZDCcfXPyf8NomKax79L2XsUDivvttub1XAbjA5HCajgLuVkTcJpvL+hmvaDTfP+8GU6NpR2Q1PoebfK8COuzpOJyCfvc1qPN3xL2mZQloz6jWDKizZaVUnn2ar3m/e1ztbfP4LgEF/v8/odvn226zEUn8JhtXMIEHtnExVe8uEGP2dSE/SZlVYaiEngsQcx+N8r6PAKKJOq955ok72W9IKwM4rUsmH5PtITrob8LWnLP6KYY7ndEi7nTnjvQBZas0/gijm0tWSerSoAAAABApkjgAQAAhTYoLihx/a+BgQG7ELmX4ssueumMNFj1kY3DeJfmYAk8DynGKx5u2j6uqfJNeLQUVsJZqCnsQsto995FlObbY9ysCTs+1XC6oecTeCql8mzarO6CZZ3sm/1Wocse9zldUGljhmKyYpILkvnuqtZrk7sz277QqnpCs4cyn8V7fJIyky6PsUnM/fa59s+EfSaic3RQ57aNsWdEM3vPseXBbkrQ9UdcsCxl5PAa/6UEfbbjNsWLLvo96OP2+raKPQn63dSjTdbJSeYKxf4xbSxBacQk8Oi5tGVVN1Ss6mZ9n7Yl955X/NcF79G3pf0erbE/pM0GLvissN9FG+8JNraN9ZTCkr7HFa0qklVq0mY9F1SztMdwcRckqdnvFJaIZo+dvefeo7hb83+rS1P1EZXA01fLZyUV/n9pShiPJdlXv59aovdwVRobPxvt3v97KVV/0C32vvUfxX1N2/v0EuB3cwAAAPQN/qMFAAB6xuDgoFUTOHxgYOAIF1zEsSW2PqdYOMdpLBrG+5Zc0bzsIsiEpnjSBReUJobxTFhZCD0k/FazXeyyi9ajwm0jGhcz7Pb8btYEnaHJOllUj+q2nkzgCS9ofkaxvQuqWCyYYHdLjLCLxHaB/a+23E0GU+xnPsmXeX5j2ie5I245rHfp3FhZm6Vjmj2aUxKYVTKKSuAxW7hkCTwbxzdxtybory2WZKDHuu6iL+hbooIl5t2doOtCHJ/UXLB8zgci2myRwzw6oudoHW12iGhyu57LSyP2X0Kbr7pgydO1PId9Ozw3rILjmer/Fd/5Dhnb3qu+Ho7tmzT+mva73sZVXKixu7JUi+ZgCRf2O7LN3ZL0fH//eEn7WlLYKZr7zRH97+6iH5NLtf/tvvP1EVb/ikqw86pUg/fT/00sUdki0Wdv0+/HwyWeN6pDjg63w/1u3EgkA4Zq/J/6cRd8UeZRF3xpZjyJOgAAABgJSOABAAA9J/yWqa1jf8vAwMB+LriAZxeIbNmSRbo4tUXCaLVEzNuar/3R0RKRrMz35DCsAsTz4e0Xw7Bv0L6kQ30t60n3Gz3GdsHTLgqMaop5w2j+WaPNAkNi6M8sMSfqIupI1lMJPJVS2aq/fE/xRZe8qkqDXWxaI4z91aclSRxerdcuT2eWfW8fxQoKuzBvCRZLhbFEuLUEyWk5zme0R5skFTVKHm3yWiKs7tFmo4R9Fun4LMklbjmvjzrPBB5bTkybdWOaWcWVu3z664TeT6ZpPra825oRzVa2BBe1nZT1fDpgCVSHRNx/suJ9CTxhAsrBim+45Mv7WFW1DcI4VH3ZUmt/tqpUPjurvVXYsUTx3Vzyz35L9ts6jJ+rr+9r3IsT9tG2cO52vFatsp3lM+1x38NCfVkCzwGa/3AJa/bYbBbRjyWtp5rA44LE/VbVvx7SPCekPB5ihP8fmx7Gk0n31+/r9lptToZvjuZE+QVd9O/p/G27t7zsgmSxiU1hX3iZ0Aiq2gIAAGCk4z85AACgpw0ODtq3m+3iz6Vh4oZ9e347FyTzfKibcxuG/aF6iTC86JjsD5iWzGN/7Jwebhu3LexC94ymmB5uZyos+ccenzfDeN3j32/GzH+2VlN1wTe8Zx8m5gyj1c9tv3lccJFuaMzV4ueNGJqUM69LfrEP7cuz+lXbKqXyYtr8QmFVA9L+P5BVN7hMY1yt7d7Veu3RtjoplS2x5dA0J5ajV3Xcy/o0VLtx2oxrdX9YZSHJkked8lnSa2qC/uISQEzaF7ZbsWUlrOpbVPWNjyTss0jHd6dHm/US9GfLI8V9ftynczivxFo7vqgEHmPPXx5LeuVG7wH2O9yfXJDg1yl77z9V8Wn1+0VLjIoZ2ypW/cYlq8rWykqKi9Tn6S74bHg1hT6HFS4Fua/iMBckHafBkvtuUt9/cEEiz4yU+m0Xy2f1Gf0fzj7rG8t+tSWsAmT/hxiajN+chD9/2GaUi0/uHxW2pTKQH3tfaHzxpPlLKPbFlOYvqExu3CY5BwAAAIhHAg8AAOgbg4ODttzE9WHsPzAwsLy2W4Zh3xTuZnWedjX+mAwUUeEr8FRKZVtG5HjnV2mlE/Y+c7vG26tar/1fG/vbBaNefI8yM9PqSI9d3ssMbujR5pEE/fks8/Nggv7aZo+lzkdbfiIqmXWM2iyrtk/F9ad2dqFz5ZhmtlxRbF8pedijzToJ+lvbo81DCfrr1HiPNnZ8fZHAEyahWKLlD1z6F88/pfiXxthS5/rLw4xtSW4nuGC5rrTtoVheY2ybRRKM+rVEp7NdsBxk2uw5+aZiI0us8nmfyBAJPHifsApQ40sMqVQja0oKav5iwNAvDwz38+G+eDD0CwzDfalh6M8at9vV/KWM4b6w0epLHM1fCJnp3vtiiH2uT3OzfpHknQi/SAMAAAAgZSTwAACAvjU4OPiENqdYhGXa7cLqWBd8q9i2y3VxekAvsuSKl1zwLdp3vmmr19bseq1FVW7qinA5nN8p9s5xWKvacH64bMpvchwXbQgTUjbxaPpAgm59Kr/lmQRiSS5xc7L7fS7Mf9C1rsLWMN53qaIUWLUrq+AQNacklfh8qjHlknwV8kkcWzXzWeRAr0WroHiGYtcMhym74P35EzpH363ypX/bBfcLXVC5MSubKs7QWDun+fpQf7aUoyVwLZ9Wny18WHGjxtui3SpznQir6LWq/mUVsW7IcTroc0OSggAAAAAgdyTwAACAESEs035PGCfazwYGBiyBx5a/sSU21nfBUhQLdWuOQI7sgtdLYbzg3it7/2L4M9s+P+TnL+p19L7KBUVUKZXt28sXuKDqQt4smeBYzeHtar12XBfGh7/tFfN5tLvJp7OwiscKMc3s2+pP+PSXksc82lhizjWe7eL4VMVJhV5fM/WYT9TNZSKaLag2i6rtcx5d+iTw5HZ8LkhQihNXEalXnOSyTd5psCou+ymOsX+EiUPnuWyTdxp2UnzZBUt6dSxM3rnOBcuE5WEFxfUa16dqWdq2cK0T9W7S6/uVPCcDAAAAAECWSOABAAAj1uDg4JPaWJxv/w5LptvFMPuWr1XrWSeMFVx81QEgb5aUZgk1U9yQRBv3XiLOcPdN0bk/vRsTzkO4DIstJ9JO8o4tw2dLDk1wwWNrFnZBFY8lE/ZlSTwPV+u1vljepk/t69HmUT2Hvgk3do7E/R/7mebqHzl4xqPNsp59+VStm+jZV1psyZSoBB5jx+eTwFO04/N57nq+kqDeJ+11mMXSVa0cqjHP0uvwWd3+leLTOY59lMY+X2NP66QT9bGECyrvJE3esfceS+qzzzn7jJsj7MOSgRbw2N9ea5e5IBExTyyfBQAAAAAYMUjgAQAACIUl0x8J44LGzwcGBqxCw5ouWKriQ2FYJQL7tv78+c8UfWS4JJwpTf9+aci/m++fUsSlqwrgYBdUOvBlFyIvcUHSz/XVem3YKkOVUtle719QfNP5XTS1RKIztd9a6nNSgvkgB3pettFmA4+mF8Q3edfSHm18kjLS9KxHG595+7brRgJPHEs6uMOjXdGev8kK+71kIKLNUjqXB3Jctixtljiye0wbe0+29+irXVBF0Z4De98e5YIE648qdnFBFUUftt++etzudkE1nii3K/6muE0x3gWfvfZ3tEUUa7ugcs+Ozq+Sl7GEUFvW8WjP9u8TVg061yVbNmucC6ocXaZzZXKLPq0a5ecVe7joapQfTjBux+z81mariCYk8AAAAAAA+goJPAAAADEGBwetNH8tjFkMDAwsrs2KLriIZLF8uLWf2UVD34s66E2vuvcSal527yXjNGJqxH3v/Dxc3g0pqJTKY7X5aYJd7CLoj6v12oS4hmpjS+f8TGPY0iuHu6B6S9SFdWMXa491QeIPCiJc6sr3AvpfEnS9lEebvBN4fBJcFvbsq4jH55OgNMazL58qW7klKOk95zWdq/Y5MTqimZ3LVjllaj6zSt3YiPssgdXea0/WYzFc1Tg75v8qblb8So/VZ7X9o4t+vBq+4oLHrhVLFjpQ49Zb3G9LTD6ouEDj/kDbo1x8IlKDLaPVdgKPHKD4mGdbO1/ts+qiqCQv3WfV5975PVfHc5i2hyi+7YpRfdIShpZocZ+939yb41wAAAAAAMgcCTwAAAAdGBwctIuHFtXh7h8YGLALa5bIs1RTWNKPVfBYJNxaLOqiLyYhPfbN/elhWHKWLWXx8jDR6ufvhp7/vJeRQAthUsafFB/waG7P/Z7Veu3CpOOEF5K/q/H+7YKqPXPF7LKL2h6r/cYlHQuZsaoba3m0u1rP2/0J+vVJhHk+QX9peNGjjU/Cg/FJhOnJ49NrdF5t5olpNlPnwwyvWaXHji9u/lYtpVcTeFqxqiq7h8tceVFbS6axpBp7b14wpnmrKmozFfuqr1MSjGtz3ENjW5WeE1x8Yueqaru29kuceKL9VnJBlTkf1yp21jgvJBlD7S1xyj7jbKksW2LW9/0hK1HLZ13Vw9WnAAAAAAAYFgk8AAAAGRocHLREj/vDaGlAXHDBaaEwxoTR+Lct1WXLPiwQxqim7bxDwhIK4i4gFY1dgHnNBRVthsaMMIa7z/Z5JYzpTW2nD4l3f07STd/6hmI1j3Z2cXKLar3ms6ROS9r//8KlPewCZ9Trze6zqkDbx3R5jQsqHvSinlnKzZY00+Znns2PSNi9T4LLsEu0ZWi4yiVD+V6g90lQmubZV1p8xvM5Pp9jy/u5M77H90TWE8nRqYqvh1VhErGkGL3G7X30zDbGted3O/VxYxv72tgnaezldPNHHs03d+1VjrH3pLhEM/N3FyTvvNbGGO/Qvv8Kq9pZItDi7faTApbPAgAAAACMKCTwAAAAFMCguPeWVerIwMCAVSCxCzxzuuD3vdnD283/Hu5njdvtsov4r4fbxu3mf0f97LXwMQASq5TKlrT2Q4+mdjHzk50m7zRYBR+NfZxufjem6bZqt4zaPx3R153a3JnGvDA8PQeWCGkJV3N7NL9Cz8kNCYdYyKNNrya4mLiqJqZXE5SKeGwmzQSsXnCVazN5p8lZLlhmau0E+9hSlju3m7zT5FDFlxRLx7RbP2nHev9aXZvPeTS9xdp1krzTYBXINK4l0FhVowU67S8pjW1J6q2WWbPn7OocpwMAAAAAQC5I4AEAAOgzg4ODduHL56If0C/sombcBVPz/Wq9dmvKYx+k+GzM+JZUt6viqJTHhqdKqTybNmcoVvdobtW99m1jmHk92uSdBOKTwDPKs6/5PNoU8fjm92hTxGMzaR1fL7AE5t07TN6xpJNBvd5tOcXfJdjteO3XcTUXS5rR2Ke54HMhis8SfkN9z8VXV7TlsnbRPF5to/9hqa97dExf1c3z0uozgU1ckFz0tW0HAAAdhUlEQVQ+nNs1t7yX7AMAAAAAIHMk8AAAAADodV/1aFNTnJD2wNV6bXqlVD5aN4+LafppRwJPN9lz9BnPtofpeX2kjTF8kkBmttFvJ3yqcMzh2ZdPglJqiQOe0jq+Ih6b75i+z1/RHa3X3aSU+rrU+SfwWGLWYSmNa6wqTFwCz3JJOgyrh+3i0fRAPYZPJenbh/o8X3P4vItfCjJtW0fcx/JZAAAAAIC+RAIPAAAAgJ5VKZXtQuhGHk1/YpUZMprG6YojXHQlk7LmuoDm0I0qHiOaHvf9tdnfs7ktm3V0m0PN5dHmzTb7bpfPeL4JID5Lj73h2Vda0jo+n2PL+7kzPtVo+iGBZ4biD2l1pvfZCXrdP6ObS3o0P1PtX0xrbLnXo81oW/oxwTJXO7n4SlkPK07x7K8dtizZdi6oKJeXqASeq3KbBQAAAAAAOSKBBwAAAEAvs6oqccuK2AXVa7OagCXlVErly1x0hQS76FlxXHTMlZ6Xr2jzK8/mkxVf7GAJH5//XxcxgWd2W2JMx/12TDufC/dFPD6fBBefY8s7OcmkmYBVZFfo/Hsp5T4fcH4JPH9Nc1AdxxS9nmxpp0VimlpVnSQJPHGO63T5sShWlUzHdZELlozMnMZaUZtVWtw91aaUxzwAAAAAAMgbCTwAAAAAelnUN/Qbzsqw+k7D5S5I4LELqE8oxisedEFVhPFhPJ3xHNCkUirvqc0fXXyCl3ldsaPOk06eo8IluNgFfT0Odu7HPQb2t4HXPdrE6ecEnm5U4BkpCTz/zKBPn9eyJYLUMhjbkgHjEnh8KnbZ+5gt77ZZTDNLLjvHp78OneZySuBx0Z/t1+q9rRsJdQAAAAAAZI4EHgAAAAA9qVIq20X3jT2aXpL1XMIx1lQ8mmBZFGRE58Ze2pysmM1zl731vN3U4bA+iUJxVW6y4JPAk9ayOHkfn09ins85UNTnzmfMPJc0ysotGfTpsyzWuIyq1viM7fv3uLEufom361JeBqyVa1xwbGNyGCsqgefKHMYHAAAAAKArSOABAAAA0KssYWZUTJuJ1XptfNYT0RjTtbk/63EQr1Iqf1+bo51fUob5qZ6/01IYOq6Cjcn1/+C2NJbzS2DxSWKwihdxVUPy/huDT/KK77HF6cbfT3zGzGzZpJxYwuNDGfUbJ6v37DSTOD/q0eb6FMdryare6D3lRt3cPstxNIZVlYqqOkQCDwAAAACgb5HAAwAAAKBXfdijza2ZzwKFUCmVLWHncMVPEux2TLVeOyKlKRQugcf5V2fxSQKx4ytaAk9aCS5FfO58x+zG0l5peiyjKjg+fT6VwbjG53zytb5Hmzw/56xSWaYJPLKhYoEW943X+TIh4/EBAAAAAOgaEngAAAAA9Ko1PNr8J/NZoOvC5dROVHwtwW4nKQ5IcRo+VVzyXu7I5//8b3smUBQxycVnPJ/npYjH5jumz/EV2aQujj05o37TXG5tTY82eVZ/uy+HMbaKuI/qOwAAAACAvkYCDwAAAIBetaJHm8yXz0J3VUplqwpzpmLnBLsdp9ivWq8NpjgVnySQOVIcz4fPeDM8+/JJFOnV4yvic+c7pu/zV1TPdnHsQj92em+bU5vlYppN1ftYVolIw8liubOhto64jwQeAAAAAEBfI4EHAAAAQK9axqPNfzOfBbqmUiovrM3Fio0T7HZ0tV77YQbT8UkGGJXBuJ2O94pnXz7HN59nX2nxOT6feRfx2Exax1dkz3dx7Ne6OLYP+4ybLaZN3hWMJios8XEgi871nr6oNh9pcbc9X9dnMS4AAAAAAEVBAg8AAACAXrWoR5vnMp8FuqJSKq+izeWKVRLsdmi1XvtZRlN6waPN/BmN3cl40z37suNbKYXx0uQz3jSPNi+mNFbafBJ4fI6vyF7t4thpVuDKQuE+4/T++bree6fo5uiMhtjStU5aulnj+yYcAgAAAADQk0jgAQAAANCrFvJo81Lms0hBpVTeX5sjuz2PNs2s1msL5DmgHi+ruGOVdxb23OVtxbc1zxOzm5VXEkgRK/D4zNu3Xd5JLmkdXxGTr3zH9H3+iqroVXC6ySdJZmbms3g/S/rLKoFnq4j7WD4LAAAAAND3SOABAAAA0Kvm9WjTKxeHbTmSXv3/Wa7zrpTKu2pzqmIuz13sHNitWq+dn92s3uGTBLJgxnNoZzyfefu2yzWRy/kdX2yCi86NGTqvrBLM3BHNFlCbAbXNs2pLKsdXcK93ewIFFnU+NnTjMy6TMe31pc3WEU1I4AEAAAAA9L1e/QMxAAAAAMzh0YaLw30ivLh7iOJgFyQ8+bDlhXas1mtXZzax9/gkuCyW+SxmtbhHm8meffkcn894aUr7+JaOuH9OF1T9yqWql853W0YobgmlN1zvJ/C83e0JFNgHPNq0Wm4qS1k9Z+solmhx3zOKezIaFwAAAACAwiCBBwAAAECv8rmI6HMBFAVXKZWt2o5V3dk1wW4TFZ+s1mt3ZTOrYceL0+ridFZ8Elz+69mXT7siJvA87dmXHV9UAk9jvLyW5bPl4eL+ZjNJ5zcJMP3Lp9KNbyWyNGU1ZlT1natyrn4FAAAAAEBXkMADAAAAoFfZkjfzxLTpxsVNpKhSKlsiw8WKjRPsdp8LkneezGZWw3pKYReYo6oD5Z3g4pMw5JvA85RHm14/vrLHeA969tepNJOT0JtmerTxWUoybT5Le7UjMoEnozEBAAAAACgUEngAAAAA9KpXPdp04+ImUlIplVfU5krFKgl2u1axQ7Vem5rNrIan8WZqvrbMy1IRzZZUmznVNq+l3Zb3aPOoZ18+7XzGS0W4xNSyMc1mKCZ5dulzfMt59pWGFTzaPJb1JNBVPu9hi2Q+iybhUoZjMuh3Pm02anG3VZnKYxlEAAAAAAC6jgQeAAAAAL3KLm4uGdPGLm4+nsNckLJKqbyONv908c9xszMVX80xQWao8S46gceWdFvJ5VfFxSfx6WHPvnzaJUm06pQl78RVAnkkwbI74z3a5Hl8H/Ro4/vcoTf5VI9aLPNZzGq0Yo4M+t3Eta6Yd4dex89lMCYAAAAAAIVDAg8AAACAXmXVTlaLabNoHhNBuiql8lhtLlUs5LmLJWkcrDgiQcJGFv7jggvRUSwxI68EnrgkEKti9YRPR3pcXwwrDEUlVK1klXHU9m3fCXbAJ8HlgQT93e/RJs8EHp+x8jqP0B3PKt5w0QkzC9oyg3rNvZDTnFbMqN+o5bOuzGhMAAAAAAAKhwQeAAAAAL1qokebrC42pu0yxdPdnkSb3kyzs0qpvIU2f1fM47mLJaHsWa3Xzk1zHm26x6PNWi54vjOlx9Eq1CwY0+xePW5Jnj87vqgEHquIY4k1PtVsOrWWR5u7EvR3rwuW6pktos2aCfrrVNrHhx5jiXB6HVuS1toxTT+kuDWHKZm4pNl2kcADAAAAAIAjgQcAAABA7/JZGiu3ihmVUnkZF1z8fzppBRK1t4u0I76aRhvJO5MV2+vxy+vidZxxHm1Kmc8iUPZoc2fCPu34oi60Gzu+PBJ4Uj0+nUPTdf49pJurRzRbXW1GWVvfftuhMWyptY/ENJvmWEJrJLjbxSfwrOfyS+CJOy8T0/m+gguSkIbzsqKa9pgAAAAAABQVCTwAAAAAepVPtZN1M5/Few5SfE3xaqVUfkzbRjyqeCSMR6v12ls5zqln6DHb3CVL3rHHcxs9no9kN6vE7Jx8RTFfRBufxJM0+CQK3ZywT58kATu+sxP2246447PXWdIL/3Z8UQk8llhjyRI3JOw3qTUUo2LaVHNaqgzdVVd8MabNRorf5zCXxlhpi0oKvFbn+RsZjAkAAAAAQCGRwAMAAACgV/kk8KxfKZVnT7hMULvWCbe2jNAaYTQbVIxRTMlhLj1Fz9H62lzi/JN3aort9LxOzm5Wydl5pmOxpJitIpotozarqu1DGU9nC482/07Y500uWDIt6m8JmyfsMzE9fsu7+OpatjzY1IRdX6/4ckwbO76sE3iyeO7Qm/7l0WarPD7nNMZi2qyfQdcsnwUAAAAAQIgEHgAAAAC9ypaPeU6xaESbeRUbK67LciKVUtkST+KWFplQrddI3hlCj50lYlzu4iuONFjbnfVYzshuVh2xC+5RCTzmk4rMEnj0mC7l4s/H8XoMfZahe5clxKhvW0arEtFsTVsSR20nJOk7oU96tGnnwv81Lki0G4gZ++A2+k4iq+NDj9Hr6H69np7SzWUjmlli6GaKqzKezg4uqEKVGh3bHC6Yeyuc5wAAAACAEYUEHgAAAAA9yZaPqZTKdsF9l5im27uME3hkE8WcMW18lh8aUfT8jdbmH4rFPHf5i2Kvgi+pcpni6Jg2n1Ecm+Ec7JyPSkIxl7XZt+0XlcBj7Ph+02b/PnbwaJP4+HReTdQ5eaeLTn5aN8sEJfW9iAuSDqNMUozLYnwU0nmK78e02dtlmMCj89LeT76ZRdeKBVvclzjJEAAAAACAXkcCDwAAAIBeZhcs4xJ4dq2Uyj+q1mszM5zHTh5tfJZCGTH0nMymzVmKD3ru8nvFvnoeB7ObVec0vwd0bA/q5moRzTZSm9WtbUbT+IpHm/Pb7PtixeExbfbS8f02i+dK/a6szaYxzaxiyS1tDnGRi07gsUSGvRQHtdl/nN1dfDLgBZbAmNH4KJ6zXXwCz3Z6bayl8+K+jObwKcXaGfQbtXxW1hWFAAAAAAAoHBJ4AAAAAPSySxR/cNEXvBdW7Kk4MYsJVErlhbTZOabZW4orshi/h/1U8QnPtscrvlP05J0mdsH95xH3WxLIAYovpz2wzkdbvmvdmGZW2eK2dvoPl/S5M2aMNRXbKi5tZ4wY9rjNFtPm7A4SXM5xwXMXVcFobz0Gv9IYL7c5xrDU51zafMej6Vlpjoti03l2l86Nm3RzbEQzW9rqt2q3Zdrvk+ESkb9Os88mUcsNsnwWAAAAAGDEIYEHAAAAQM+q1msvVUplS+KJS6A5RO3sov7UDKaxn2JUTJtrNPakDMbuSXourMLJTz2b/9X1VvKOOUNxiIv+P/duehxO0HHdntag6m8ObX7l0fQPHQ51qgsqIkU5SvO5Ssf3WodjvUv9WQWQuKQnS5Y7ud0xNN/HNM61url5RDNLCrQKPAe0O04L+yuWjWlzu+ZYS3lcFJ+9rqMSeIyds/Z5lPbyfPZa962U5i1cLm69Fne/rrg+7TEBAAAAACg6EngAAAAA9LrfufgEnsVcUIFn1zQHrpTKK7n4pU3MKWmO28vCJJPTFHN4NLcqMV/useQdSwJ5Ssf5N93cMaKZVcw4S+3Kaj8tpaGPUKwT08aqxpzW4Th/CcdaMKLN6i6o2vHtDsd6hx6neV2QzBV33lyqx/PxDoezhIWoBB6zn+Z0pcZKZWk89VXS5mCPpselMR56zmWKcYr1Y9pZ4twEnZcXpTGo+jrQZVApLLSla11N6yYdw/SMxgUAAAAAoLBI4AEAAADQ06r12s1hxYzNYpp+Qe3uUfuj0hhXfc2tzbmKeWOaPqZI5WJqn7Algj7s0e4FxU5pVnDJ2S8VO7jopZhWU/xF55Id55udDKY+Pu/8ksmO77QSlS0dpfEsyeXAmKbfsuW21L6jhCH1YRf5rY+1YppaotfhnYwV+rvifsUaEW0sAeuvmttGOr6HOxlMfSytzQWKuWKaPuKCJb4wwtiScDpPvqebN8Y0tb/znaO2X9U+Z7Y7Xvia+4Xih+324WHriPuuynBcAAAAAAAKiwQeAAAAAP3gBy6o1vKBmHa/rJTKA9V67chOBlMf87jggnvJo/mhGu+tTsbrF3rcxjj/pbO+ocft6SznkyVbGkvHe7ELkniifFpxmtrupX3eaGcs7WuVfmzZrqhkIfO84ph2xhiG9bO3YkxMu5M1vxk6tnPbGUT72t8tbMmvz3k0vzCNJcnCZAk7T+MS7xZVXKW2W2ifR9sZK0zeuVqxvEfzgzpN9ELv0nP/b50vVv3qSzFN51ScYcll2h5gCXdJxtF+y7lgmbwt2pup1xj2XrVVRJMrsxobAAAAAIAiI4EHAAAAQM8LkyVO0M19Y5raRUNL4rFKHt/Wfi8lHUv7ruyCKhg+yTuWVHRW0jH62H4uetmlBnte1tNjvV7G8/ExpYOqTVa94hOKuWPa2QX5pXS8X9JYz/h2rvaWsGbJa1Z1ptVSNM1+0s45PxzrR+Mf6oIl7KI0KtVYtaHDkySgaB9LkLHEpG08mr/i/CoQedE8L9b41+vmJjFNV7DmavsF7XN1kjG0z4YuSARc2qP5DYrzkvSPvmSfcZsolvVo+zXFZ3Se2VJ2p+n8fD6qsdqtos0+iq+7+PesTq2tWLLFfZMUd2c8vq/F9bj8stuTaHKYnseZ3Z4EAAAAACA7JPAAAAAA6Bc/VmzqgguDcXZVbF0plY/W9hSfpAa1XVybbyu+q5jPY4wZij3U96BH276nx88es296Nh+t+FGG00niCUVbCTx67h/RcR/mgqVo4myuuE/tf6btn+Iu0qrdJi5YpqviOR1bkuYUz7a+TnTBa2mDmHaWOHeIYlvN25KIIpfHURtbSmovxaEuqHLjwyqNPOnZ1tc3FHcq5olpt4jiSs3bko1+rnk8FtU4rLrz47D/uKphZrriK7yXQOfAFEv0081/Ob+/6dnrx96/Dtd+devCBUuxWVUeO/cWcsFSflatxz4746p4pSVy+awCnev2+BXls8jYc0kCDwAAAAD0MRJ4AAAAAPSFar02o1Iq23JFt7rggnoca2MJPD/TfnYx9EbFg4rJLqjmYUkESymsWs8mLkgOmjPBlPbRnB5M0L7f7ezil1vqR3aObemC8yeOPT7HKQ7ROfl3bf+tGK+Y6oLz0Za2scpPn1KskWAOVtFiz7QvitvScJqnJfDYslU+lZWsopIlutgxXaKouSBB6tVw/1VdkEhgy4otnGAq1tcfErT3ouN7SHP9jm6e7NHcEh/2UHxJ+1i1nH+6oIrI5PB+O551XLAskUWS95JvWjJYgvboYzoXbtA5ZsmQPudlwxyKj4bRLkv6sc/XqOQb87ZHX1F9sHwWAAAAAGDEIoEHAAAAQN8IK55sq5u2lM38nrtZdY3twkjLLzSX01Psrx98odsT6IYwycWSl6zyxcqeu1kizx5hdMqqNeyoeUxMoa/3Ub+P6vh20U1LOJrDc7cPuWDprzTco9gtq4od6vdPOr7/cf7Vo6yqyWZhpOEYzeEvKfWFPhGel/YZZ8tj5VE1xyrKWWLdx118As9bUXeG1djGtrjbkn8SLUUHAAAAAEA/IYEHAAAAQF+p1mu3VUrlrXTzMpesikdajtQcDuzCuIWl52OUC6oYjUg6H57XY2BVeK53QRWdvLyu2Enj35LlIOr/nzq+3XXzTJfv3xkeVmyt8adlPI4tnWcVgnbNeJyhTlcckPOY6BE674/V6+5FF1SfmivDoZ5XbKfxqhpvG4/2b8bc/zHXer53apznEs0OAAAAAIA+QgIPAAAAgL4TXmis6OZFirVzGvYNxfc09u9zGq+XrO9G+P8/dV48rnPSqk5c7vI5J225mx007jU5jGXHd46Ob7pu/lUxKoch71B8QuM+m/VAGuNtHdtuuvmCYt+sxwv9VrF/VpWF0B+s0pvOzftckDy3egZD2JJZX9Q4j4X/ns1jn1dj7mf5LAAAAAAAWhjRf0AFAAAA0L/C5bQ20M0jFd9yfhce22WVQPbIutJJD1u12xMoAp0fT+mc/KhunqDYLcOh7lbsovEezHCM99F4l+r4NtTNcxRrZTjUKYrvaLwZGY4xC0visTF1fJY4dLzzX6IvqVcU32IJPvjSuTJO5+W6urmfC5amG51Ct1MURyh+q/6bK+r4/B0x7nVJAg8AAAAAAC2QwAMAAACgb1XrtZkuuOh+hrZHKbZIeQhbuudY6zscC8NbstsTKAqdJ1alZnedk+dpe4xitRS7t+QPS1g7WuO8nmK/3jTufTo2q7j0fcUPXbqJLpYoZ4k7V6TYZyIa+wwd33W6ebRiZ8VAit3/3QXHNyHFPjEC6Jx5TZsjdW6eqK0tZ7enYt02unpCcariJFv6b5j75/HoY3qrOzS/FVzrhE6rGnarR/8AAAAAAPQtEngAAAAA9L1qvWZVM7YMK/J8RbGj66xKgV3ktCogf1Tfz6UwxX43d7cnUDQ6b/6h89GqTVgSyD4Kq8zTbjLIUy646P579ftCSlNsW5hMcISO7yQXHJu95pbroEurbGV9nTukGkhXaA5ParOLju+XLqh6spNivja7s+WGLlYca5VUUpoiRiidQ5YEYxWijtf5uby2m7tgCUNbXsteg4so5lXY0myWgDpZYZW67nJB9ZtaWG2qFZ8Enhcj7ouqvnOdxn7Do38AAAAAAPoWCTwAAAAARoxqvXabNrdVSmVbUut/FWMVtuSPVQRYxg2/zJZdzJyouMf2VfxDcbv6Gsxl0n1Aj9WPtPlRt+dRNHpc3nLBclPnhJUptnXBebmmYmXFXC12taSxO11wPl6tuCXsq1A0J7uQ/3Md2+HaVhQfd/GvNzuOCQpLurtJcYX6eTiXCSekedlSZXvo+CxJyRITLFliPcUqijEtdrNKXQ8o6oprFVern5dymG7udFxna3N2l8Y+UJsDuzT2tt0YdyjNwxJNTwsjLT6JalFJhFtF3Jfr8ll6fLbLczwAAAAAAHyQwAMAAABgxAkrhFwdxjsqpbJViVnMBdUJrMqAVQKwJYkmhu2BzITLJv0+DDsfP+CC89GWoLJz0irP2NI0k9T21S5Nsy1hstutrml5HB2fvcYWVYxyQaKSJbZMVUwuYjJSFM3X3icuCuMdOj6r8GVhx2eJSjMUz4dJTUCvWjTmfnvtRlWlO0Txyxb3PdTWjAAAAAAA6CMk8AAAAACAe+civCVFPNnteQAmTGJ5Joy+o+OzhJ2+fb2FVXX6srIORrS4BJ5nopbB0n33pTwfAAAAAAD6Cgk8AAAAAAAAAFoKq4KtENPs8RymAgAAAABA3yKBBwAAAAAAACigSqm8ozarKh5RPGbRpaXYVnHB8pJR7s9jIgAAAAAA9CsSeAAAAAAAAIBi2kBxQPMPKqWyJfC8m9CjOKhar72d8Tw+7tHm3oznAAAAAABAXyOBBwAAAAAAACimmcP8bIyiHIb5swsSerK0u0ebWzOeAwAAAAAAfY0EHgAAAAAAAKCYnvZo8zGXYQJPpVTeWpv/iWlmVYHuzmoOAAAAAACMBCTwAAAAAAAAAMXkk5jzBcWpWQxeKZXn0uYYj6aXVeu1t7KYAwAAAAAAIwUJPAAAAAAAAEAx1RVvuui/4W1WKZXHVuu1mzIY35J31vRod0YGYwMAAAAAMKKQwAMAAAAAAAAUULVem14plW92wTJZUU5Xuw3V/rm0xlZ/B2mzj0dTWzrrurTGBQAAAABgpCKBBwAAAAAAACius118As/KihsqpfJnq/XafzoZTH2M0uZ4xR6eu/xQYw52MiYAAAAAACCBBwAAAAAAACiysxSHKpaKabe6YlylVD5R299U67Wnkwyi/ebT5kuKnyiW9dztXI1zZZJxAAAAAADA8EjgAQAAAAAAAAqqWq/NrJTKB+rmnz2az634nmJf7fNvba9W3Kl4VPGs4tWw3TyKxRQrKtZWjFVsoRiVYGrW594J2gMAAAAAgAgk8AAAAAAAAAAFVq3XTq+Uytvp5g6eu9jf/DYNIwsvKLbVvKZk1D8AAAAAACMOCTwAAAAAAABA8e2mWFqxQZfnMUmxVbVee7DL8wAAAAAAoK+QwAMAAAAAAAAUXLVee6VSKm+lm+cqtunSNMYpdtRcnuzS+AAAAAAA9C0SeAAAAAAAAIAeUK3XXg6X0jpAcYhi7pyGfkPxa8WhmsPrOY0JAAAAAMCIQgIPAAAAAAAA0COq9dpb2hxZKZUv1PYIxWcVAxkNN6j4m+JAjXt/RmMAAAAAAABHAg8AAAAAAADQc6r12iPafK5SKh+q7T6KnRWLptT984rzFCdpnP+k1CcAAAAAAIhAAg8AAAAAAADQo6r12gPafKtSKn9X27GKTRUbKdZULOHZzSTFXYrbFNcrblK/b6Y/WwAAAAAA0Mr/A+0DtB9idDCHAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "execution_count": 4, "metadata": { "image/png": { "width": "35%" } }, "output_type": "execute_result" } ], "source": [ "Image(\"figures/tailings_diffusion.png\", width=\"35%\")" ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "Let's put the origin $z=0$ at 2 m depth, so that the pond-sediment interface is at $z=2~m$. We could also put the origin at the top and set $z=2~m$ at 2 m into the sediments.\n", "

\n", "\n", "## Properties of the problem domain\n", "Here the only property needed to describe steady-state concentration profile is the diffusion coefficient $D$. For our problem, it's value was spatially homogeneous $D=2\\times 10^{-10}~m^2/s$.\n", "

\n", "\n", "## Boundary conditions\n", "This problem has two prescribed concentration boundary conditions.\n", "1. $c(0)=2000~mg/L$ at 2 m depth in the sediments (where $z=0$).\n", "2. $c(2)=93~mg/L$ at the pond-sediment interface (where $z=2~m$).\n", "

\n", "\n", "## Initial conditions\n", "\n", "Not required since this is not a time-dependent problem." ] }, { "cell_type": "markdown", "metadata": { "lines_to_next_cell": 0 }, "source": [ "# Assignment" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "editable": false, "lines_to_next_cell": 0, "nbgrader": { "checksum": "1feb0ff41fc784bacfaee46cf689a869", "grade": false, "grade_id": "cell-aab5f6e342530224", "locked": true, "schema_version": 1, "solution": false } }, "source": [ "# 1 Finding an analytical solution\n", "\n", "Let's see if we can guess the exact solution to the BVP for the TMF diffusion problem.\n", "## Your turn\n", "\n", "1. You are clever, and guess that the concentration profile varies linearly with depth. That is, the function is of the form\n", "\n", "\\begin{align}\n", "c(z) &= az + b\\\\\n", "\\end{align}\n", "where $a$ and $b$ are some coefficients. What are the values of $a$ and $b$ that satisfy the boundary - value problem? Common sense: the solution has to run linearly between the two boundary points. Solve for $a$ and $b$ and enter their values in the cell below for autograding, i.e. write two lines of python that set:\n", "\n", "a= xxx\n", "b=xxx\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "deletable": false, "lines_to_next_cell": 2, "nbgrader": { "checksum": "d570d90e0eb71ebe2475316ae950e40f", "grade": false, "grade_id": "cell-380fbeea05e160b1", "locked": false, "schema_version": 1, "solution": true } }, "outputs": [], "source": [ "# YOUR CODE HERE\n", "#raise NotImplementedError()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "deletable": false, "editable": false, "lines_to_next_cell": 2, "nbgrader": { "checksum": "92f6327c45959050577d1e0497137940", "grade": true, "grade_id": "cell-e61ecfd1a8dba18b", "locked": true, "points": 2, "schema_version": 1, "solution": false } }, "outputs": [], "source": [ "# We test your a and b values here\n" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "editable": false, "nbgrader": { "checksum": "194252bb36b92034ea870ff6de4c2649", "grade": false, "grade_id": "cell-822", "locked": true, "schema_version": 1, "solution": false } }, "source": [ "2. Prove that the analytical \"solves\" the BVP by:\n", "\n", "i. substituting the analytical expression into the partial differential equation and differentiating (in the same way you proved solutions solved the ODE).\n", "\n", "ii. showing that the solution satisfies the boundary conditions. That is, show that $c(0) = 2000$ and $c(2) = 93$.\n", "\n", "Enter work in the cell below" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "9a13dafa024ba0fb6ad633346ad6e927", "grade": true, "grade_id": "cell-822ad23c1f3437c5", "locked": false, "points": 4, "schema_version": 1, "solution": true } }, "source": [ "YOUR ANSWER HERE" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "editable": false, "nbgrader": { "checksum": "bc1fdefbd3896740d8426076f1884404", "grade": false, "grade_id": "cell-21015739c885b7d5", "locked": true, "schema_version": 1, "solution": false } }, "source": [ "3. What would the profile look like if the diffusion coefficient were 10 times larger? Or 10 times smaller? Explain in the cell below" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "8fef1eca8b8c26ec54b03a6db1ff3022", "grade": true, "grade_id": "cell-21015739", "locked": false, "points": 2, "schema_version": 1, "solution": true } }, "source": [ "YOUR ANSWER HERE" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "editable": false, "nbgrader": { "checksum": "bedadf16cfedb43fcd0643d9d299a8c7", "grade": false, "grade_id": "cell-790f63f42c2c67fe", "locked": true, "schema_version": 1, "solution": false } }, "source": [ "4. If the porosity of the sediments is $\\theta=0.25$, what is the magnitude of the specific diffusive flux $j$ in units of $mg/(s\\cdot m^2)$. Enter the magnitude of the diffusive flux $j$ in the cell below for autograding.\n", "\n", "Spefically we are expecitng you to write a line in python like:\n", "\n", "j=xxx" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "deletable": false, "nbgrader": { "checksum": "0c0eebf439a0ff4edd22487b49aae798", "grade": false, "grade_id": "cell-2e98eca5963b3b67", "locked": false, "schema_version": 1, "solution": true } }, "outputs": [], "source": [ "# your answer here\n", "\n", "# YOUR CODE HERE\n", "#raise NotImplementedError()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "deletable": false, "editable": false, "lines_to_next_cell": 2, "nbgrader": { "checksum": "3d9368a32edb1acef8e807c90512ecd8", "grade": true, "grade_id": "cell-206039ca628af33b", "locked": true, "points": 2, "schema_version": 1, "solution": false } }, "outputs": [], "source": [ "# Hidden test here\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2 Interpretation\n", "\n", "Heat moves by conduction from high temperature to low temperature according to Fourier's law:\n", "

\n", "\\begin{align}\n", "\\vec{q} = -\\kappa\\nabla u \\label{7pde29}\\\\\n", "\\end{align}\n", "

\n", "where\n", "* $u~\\left[\\Theta\\right]$ is the temperature (typical units of Kelvin)(note that $\\Theta$ is the dimension for temperature)\n", "* $q ~\\left[{M \\over T^3} \\right]$ is the specific heat flux (typical units are Watts per $m^2$)\n", "* $\\kappa~\\left[{M L\\over T^3\\Theta}\\right]$ is the thermal conductivity (typical units are Watts per $m$ per Kelvin)\n", "* $\\nabla u~\\left[{\\Theta\\over L}\\right]$ is the temperature gradient (typical units are Kelvin per $m$).\n", "\n", "\n", "## 1.\n", "\n", "Show that the dimensions of the left and right hand of Fourier's law are the same:\n", "\n", "Dimensions of $q$: $\\left[{M \\over T^3} \\right]$; Dimensions of $-\\kappa\\nabla u$: $\\left[{\\text{Your dimensions here}}\\right]$\n", "

\n", "\n", "The partial differential equation that governs heat flow by conduction can be written in vector form\n", "

\n", "\\begin{align}\n", "&\\rho c_p{\\partial u\\over \\partial t} = \\nabla \\cdot (\\kappa \\nabla u)\\label{7pde30}\\\\\n", "\\end{align}\n", "

\n", "where\n", "$\\rho~\\left[{M\\over L^3}\\right]$ is the density of the material through which heat is conducting. This equation is called **the heat equation**.\n", "\n", "## 2.\n", "What are the dimensions of the specific heat capacity $c_p$?\n", "\n", "$c_p~\\left[{\\text{Your dimensions here}}\\right]$\n", "

\n", "\n", "## 3.\n", "What is the physical meaning of the the term $\\rho c_p{\\partial u\\over \\partial t}$ in the heat equation \\ref{7pde30}?\n", "\n", "## 4.\n", "\n", "Write the transient heat equation in non-vector form in two dimensions ($x$, and $y$). Hint: look at diffusion equation examples above.\n", "\n", "\\begin{align}\n", "\\text{your equation here}\n", "\\end{align}\n" ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "all", "formats": "ipynb,python//py:percent", "notebook_metadata_filter": "all" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "nbsphinx": { "execute": "never" }, "toc": { "base_numbering": 1, "nav_menu": {}, "number_sections": true, "sideBar": true, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": true, "toc_window_display": true } }, "nbformat": 4, "nbformat_minor": 2 }