

Earth, Ocean and Atmospheric Sciences
2020 – 2207 Main Mall
Vancouver, BC, V6T 1Z4 Canada

EOSC 213

Computational methods in geological engineering

Project rubric

Learning goals

• To develop a computational analysis of interest to geological engineering using
the principles developed in EOSC 213.

• Be able to conceptualize a problem so that it becomes amenable to computational
analysis.

• To be able to create or select appropriate algorithms and computational methods
to solve the problem.

• To be able to implement the analysis / algorithm in an appropriately structured
and documented python code and jupyter notebook.

• To present the results in a jupyter notebook.

• Where appropriate, utilize visualize to present results/data.

Project timelines (revised)

Tuesday March 5 Submit one-page proposal to Canvas (instructions to be
posted to canvas)

Thursday March 7 Feedback on project proposals

Tuesday March 19 Submit progress report, including draft notebook

Thursday April 4 Submit final project as zip file containing notebook and
supporting files (details to follow).

Thursday April 4 In class presentation of each project 4 minutes each MAX.
(details to follow)

Thursday April 4 Submit self-assessment questions.

Project quality indicators

The table below lists good practice and qualitative criteria that we will be considering
when we evaluate your projects.

2

Adapted from: Developing a project-based computational physics course grounded in
expert practice https://aapt.scitation.org/doi/10.1119/1.4975381
Competency Indicators

Physical
Transcription

Where possible, analytical methods are first employed to understand
the problem to the greatest extent possible, including identification of
symmetries, length scales and timescales. The purpose of the
calculation and desired results are clearly articulated.

Planning

The program to be written is broken into modules and functions that
can be designed, tested and debugged independently. A suitable and
efficient representation of the data, such as classes and data structures,
is chosen appropriately for the algorithm. Relevant libraries, software
packages and existing code are identified.

Implementation

The code can be easily understood and convinces the reader it works
through careful commenting, descriptive variable and function names
and validation of input. Coding standards are developed and obeyed
amongst the implementation team. Comments document the physical
principles, are in proportion to the complexity of the section, and
identify input and output to functions.

Testing
The program is verified on test cases with known solutions identified
in the planning process. Visualization is used to provide insight into
whether the algorithm is working.

Running
Initial conditions are chosen judiciously. Output is organized and
labeled and input parameters used in each run are recorded. Multiple
runs, if necessary, are automated efficiently through scripts.

Visualization
Visualization is used to gain intuition regarding the output and to
present final results in a compelling way.

Numerical
Analysis

The source and nature of all approximations made are identified and
their impact on the result discussed. The most significant sources of
error are carefully analyzed and estimates of the error are given;
ideally these are used to guide the algorithm, e.g., in refining the
discrete representation.

Physical
Analysis

Adherence to physical constraints (e.g., energy conservation) is
verified. Possible improvements or alternate implementations are
identified.

Self-assessment questions to be submitted with final project
from [http://dx.doi.org/10.1119/1.4975381]

(1) Describe your contribution to the project. Identify things that you yourself did.

3

(2) Overall, what grade would you give to your own contribution to the project? (A—
Mastery. I think I did this to a professional level; B—Solid understanding. I got this,
though there may be still residual mistakes; C— Progress. I’m still working on
learning this.)

(3) How well did your team achieve the goals of the project? Explain briefly each
member’s contribution. Identify any challenges your team faced and how you
overcame them.

(4) Overall, what grade to your team’s project submission as a whole? (A—Mastery. I
think I did this to a professional level; B—Solid understanding. I got this, though
there may be still residual mistakes; C—Progress. I’m still working on learning this.)

(5) Did your team do anything over and above that required in the project description?
(6) If you have other comments on your group’s project, please write them here.

Project grading rubric

Earth, Ocean and Atmospheric Sciences
2020 – 2207 Main Mall
Vancouver, BC, V6T 1Z4 Canada

Overall project rubric
Project depth /
scope

Challenging topic
using advanced
methods that
greatly exceed the
scope of material
presented in course
notebooks.

Uses methods that
somewhat exceed
the scope of
material presented
in course
notebooks, or apply
the methods in
novel ways.

Uses methods presented in the course
notebooks to a new problem.

Incorrectly uses
methods presented
in the course to a
trivial problem.

Applies an
appropriate
computational tool

Clearly
communicates
method / algorithm
independent of
programming
software; selection
of the most
appropriate
methods;
implements the
method
independently

Can communicate
the method in one
context, but
struggles to place it
in a more general
context;
implements the
code independently

Able to modify an existing code to
address the solution to a similar problem.

Unable to
determine how to
solve the problem
numerically;
requires detailed
and explicit
direction.

Communicates the
results of analysis
in a meaningful
way

Selects appropriate
formats, figures,
equations and
animations (if
appropriate) to
clearly

Creates figures,
tables, equations,
but with some
errors, ambiguities,
labeling problems.

Able to create some rudimentary figures,
tables, equations, but with poor
reasoning to explain choice of data or
presentation.

Does not create
legible or properly
labeled figures,
tables or equations.

5

communicate the
result.

Characteristic Outstanding Above Average Average Below Average Does not meet
expectations

Code / Notebook Grading Rubric
Meets
Computational
Specifications

The program meets
all of the
computational
specifications

The program
produces the
correct results and
displays them
correctly for almost
all computational
specifications

The program
produces correct
results for most
computational
specs, has a few
bugs

The program is
produces incorrect
results, has several
bugs

The program is
does not work or
has many bugs

Displays Output
Correctly

The program
displays results
very clearly and
intuitively, and
meets all display
specifications

The program
displays results
clearly and meets
most of the display
specifications

The program
displays results
clearly and meets
many of the display
specifications

The program does
not display results
clearly or does not
meet most display
specs

The program does
not display results
correctly and does
not meet most
display specs

Error Handling The program
checks for all error
conditions and
handles them
appropriately

The program
checks for most
error conditions
and handles them
appropriately

The program
checks for some
error conditions
and handles them
appropriately

The program
checks for few
error conditions
and doesn't handle
them appropriately

The program does
not check error
conditions

Readability The code /
notebook is well
organized and very
easy to understand,

The code /
notebook is pretty
well organized,
fairly easy to read,

The code /
notebook has some
organization, is a
challenge to read,

The code /
notebook is
readable only by
someone who

The code /
notebook is poorly
organized and very

6

with clear
comments both in-
line and in headers

and has good
comments

and has minimal
comments

knows what it is
supposed to do, has
few comments

difficult to read,
with no comments

Reusability The code could be
reused as a whole
and each routine
could be reused

Most of the code
could be reused in
other programs

Some parts of the
code could be
reused in other
programs

A few parts of the
code could be
reused in other
programs

The code is not
organized for
reusability

Documentation Documentation is
clear and well
written, and clearly
explains what the
code does and how.
It includes how to
configure the
system and how to
use it correctly

Documentation is
reasonably clear
and mostly
complete, and is
useful in
understanding the
system and how to
configure and use it
correctly

Documentation is
adequate, but not
well written or
thorough;
configuration and
user information is
minimal

Documentation is
does not explain the
purpose or methods
well, and does not
help the reader
understand the
program or system;
configuration and
user documentation
is inadequate

No separate
documentation is
provided

Testing Test cases are
thorough and
systematic, well
documented with
expected and actual
output

Test cases are
thorough and
systematic, known
bugs are
documented

Tests cover most
representative
cases, tests and
known bugs are
adequately
documented

Test cases miss
significant
scenarios, and are
poorly documented;
bugs are poorly
documented

Test cases are
absent or very few,
and are poorly
documented or
undocumented ;
bugs not
documented

Efficiency and
Performance

The code is very
efficient, system
meets or exceeds

The code is fairly
efficient, system

The code is naïve
or brute force,
system meets most

The code is brute
force and
unnecessarily long,

The code is huge
and grossly
inefficient, system

7

all performance
requirements

meets performance
requirements

 performance
requirements

system meets some
performance
requirements

meets few or no
performance
requirements

