EOSC 213 Quiz 2 Name:

Instructions

- Read the examination before beginning.
- Answer questions on the paper, and if provided, write the final answer in the designated space at the end of the question.
- Be as precise and clear as possible you will lose points if your answer is correct but not comprehensible.
- Point form answers are acceptable.

15 (+2 bonus) points total.

1) 1 point. True or False (circle your response): This sentence is false.

- If you get stuck, make an assumption, state what it is
- and try to carry on.

ID:

- This is a closed book examination.
- Calculators are allowed.
- You have 30 minutes for the examination. No extensions will be permitted.
- This exam consists of **2 pages**. The last page contains formulas and tables. GOOD LUCK!
- 2) **1 point**. Show by analyzing the dimensions that the following expression for the area of a circle is wrong: $A = \pi d/2$ where A is area of the circle and d is the diameter of the circle.

$A[L^2] = \frac{\pi[\cdot]d[L]}{2}$

Just need to show that the dimensions of left and right side are different. No points if they don't get one of the dimensions right.

3) 6 points. Write a python function to evaluates the function

 $f(x,y) = ax^2 + by^3 + c$

Your function should

- a) Set default values of a = 0, b = 0, c = 0
- b) Require both x and y
- c) Work for *x* and *y* as scalars, python lists, or numpy arrays

4) 4 points. Write the general finite-volume W-C-E stencil for 1-dimensional, steady-state diffusion in porous media, without sources or sinks, in terms of the concentrations c_C , c_W , c_E , the gridblock dimensions $\Delta x, \Delta y, \Delta z$, the diffusion coefficient $D\left[\frac{L^2}{T}\right]$, and porosity θ , and where Fick's law in porous media is given as $j_x = -D\theta \frac{\partial c}{\partial x}, j_y = -D\theta \frac{\partial c}{\partial y}, j_z = -D\theta \frac{\partial c}{\partial z}$. W С Δx Δx Δx

$$\left(D\theta \frac{c_W - c_C}{\Delta x} + D\theta \frac{c_E - c_C}{\Delta x}\right) \Delta y \,\Delta z = 0$$

5) Consider the following 1-D finite-volume grid with 5 gridblocks numbered as shown for a 1-D diffusion problem with boundary conditions as shown:

a) 4 points. What is the net mass that enters or leaves gridblock 3 over a time interval $\Delta t = 2.5 h$, if the concentrations in gridblocks 2, 3 and 4 over that time interval are $c_2 = 63.5 \frac{mg}{L}$, $c_3 = 54.8 \frac{mg}{L}$, $c_4 = 50.1 \frac{mg}{L}$, where $\Delta x = 2.0 m$, $\Delta y = 1.5 m$, $\Delta z = 1 m$, the diffusion coefficient is

 $D = 7 \times 10^{-9} m^2/s$, the porosity is $\theta = 0.3$.

Net flux rate just $J_{23} + J_{43} = \left(D\theta \frac{c_W - c_C}{\Delta x} + D\theta \frac{c_E - c_C}{\Delta x} \right) \Delta y \Delta z$ so the net mass over $\Delta t = 2.5$ hrs is $\left(D\theta \frac{c_W - c_C}{\Delta x} + D\theta \frac{c_E - c_C}{\Delta x}\right) \Delta y \,\Delta z \,\Delta t$ Mass from 2 to 3: $D\theta \frac{c_W - c_C}{\Delta x} \Delta y \,\Delta z \,\Delta t = 9.25e-5$ mg Mass from 4 to 3 = -5.0e-5 mgNet mass into 3: 4.25e - 5 mg

Dth	х		у		Z		j bc	Dth y z/x	(
2.1E-09		2	1.5			1 4.63E-09		1.575E-09		
Question		j				mass				
from 2 to 3		6.8513E-09		f	lux 2 to 3	9.2	4919E-05			
						-4.99669E-				
from 4 to 3		-3.701E-09		f	lux 4 to 3	05				
net		3.15E-09			 net rate flux into gridblock 3 in mg/(m^2 s) 					
mass over					answer in (mg) over 2.5			4.2525E-		
2.5 h		4.2525E-05			h			05		

b) **2 points**. Is the system in steady state? Explain. Not at steady state because the mass in the gridblock is changing over time.