"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" pip install contexttimer\n",
" conda install numba\n",
" conda install joblib"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Image\n",
"import contexttimer\n",
"import time\n",
"import math\n",
"from numba import jit\n",
"from joblib import Parallel\n",
"import logging"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 04 - Using numba to release the GIL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Timing python code\n",
"\n",
"\n",
"One easy way to tell whether you are utilizing multiple cores is to track the wall clock time measured by [time.perf_counter](https://docs.python.org/3/library/time.html#time.perf_counter) against the total cpu time used by all threads meausred with [time.process_time](https://docs.python.org/3/library/time.html#time.process_time)\n",
"\n",
"I'll organize these two timers using the [contexttimer](https://github.com/brouberol/contexttimer) module."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To install, in a shell window type:\n",
"\n",
" pip install contexttimer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Define a function that does a lot of computation"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"def wait_loop(n):\n",
" \"\"\"\n",
" Function under test.\n",
" \"\"\"\n",
" for m in range(n):\n",
" for l in range(m):\n",
" for j in range(l):\n",
" for i in range(j):\n",
" i=i+4\n",
" out=math.sqrt(i)\n",
" out=out**2.\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### now time it with pure python"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"pure python wall time 12.900637587998062 and cpu time 12.683904\n"
]
}
],
"source": [
"nloops=200\n",
"with contexttimer.Timer(time.perf_counter) as pure_wall:\n",
" with contexttimer.Timer(time.process_time) as pure_cpu:\n",
" result=wait_loop(nloops)\n",
"print(f'pure python wall time {pure_wall.elapsed} and cpu time {pure_cpu.elapsed}')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Now try this with numba\n",
"\n",
"Numba is a just in time compiler that can turn a subset of python into machine code using the llvm compiler.\n",
"\n",
"Reference: [Numba documentation](http://numba.pydata.org/numba-doc/dev/index.html)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Make two identical functions: one that releases and one that holds the GIL"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"@jit('float64(int64)', nopython=True, nogil=True)\n",
"def wait_loop_nogil(n):\n",
" \"\"\"\n",
" Function under test.\n",
" \"\"\"\n",
" for m in range(n):\n",
" for l in range(m):\n",
" for j in range(l):\n",
" for i in range(j):\n",
" i=i+4\n",
" out=math.sqrt(i)\n",
" out=out**2.\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"@jit('float64(int64)', nopython=True, nogil=False)\n",
"def wait_loop_withgil(n):\n",
" \"\"\"\n",
" Function under test.\n",
" \"\"\"\n",
" for m in range(n):\n",
" for l in range(m):\n",
" for j in range(l):\n",
" for i in range(j):\n",
" i=i+4\n",
" out=math.sqrt(i)\n",
" out=out**2.\n",
" return out"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### now time wait\\_loop\\_withgil"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"numba wall time 0.05427086600684561 and cpu time 0.051916000000000295\n",
"numba speed-up factor 236.70834219543877\n"
]
}
],
"source": [
"nloops=500\n",
"with contexttimer.Timer(time.perf_counter) as numba_wall:\n",
" with contexttimer.Timer(time.process_time) as numba_cpu:\n",
" result=wait_loop_withgil(nloops)\n",
"print(f'numba wall time {numba_wall.elapsed} and cpu time {numba_cpu.elapsed}')\n",
"print(f\"numba speed-up factor {(pure_wall.elapsed - numba_wall.elapsed)/numba_wall.elapsed}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### not bad, but we're only using one core"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
},
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": false,
"skip_h1_title": false,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": true,
"toc_position": {},
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}